
Kütle spektrometrisi, İngilizce: Mass spectrometry (MS), kimyasal türleri iyonize edip oluşan iyonları Kütle-yük oranını esas alarak sıralayan bir analitik teknik. Daha basit terimler ile, bir kütle spektrumu bir numunen içindeki kütleleri ölçer. Kütle spektrometrisi birçok farklı alanda kullanılır ve kompleks karışımlara uygulandığı kadar saf numunelere de uygulanır.
Béla Paizs, Macar biyoinformatikçisidir.

Kütle spektrometrisinde, matris destekli lazer desorpsiyon/iyonizasyonu (MALDI), minimum parçalanma ile büyük moleküllerden iyonlar oluşturmak için bir lazer enerjisi emici matris kullanan bir iyonizasyon tekniğidir. Daha geleneksel iyonizasyon yöntemleriyle iyonize edildiğinde kırılgan olma ve parçalanma eğiliminde olan biyomoleküllerin ve büyük organik moleküllerin analizinde uygulanmıştır. Gaz fazında büyük moleküllerin iyonlarını elde etmenin nispeten yumuşak bir yolu olması bakımından elektrosprey iyonizasyonuna (ESI) benzer, ancak MALDI tipik olarak çok daha az sayıda çok-yüklü iyon üretir.
İzotop oranı kütle spektrometrisi, belirli bir örnekteki izotopların göreceli bolluğunu ölçmek için kütle spektrometrik yöntemlerin kullanıldığı bir kütle spektrometrisi uzmanlığıdır.

Aerosol kütle spektrometrisi, kütle spektrometrisinin aerosol parçacıklarına uygulanmasıdır. Aerosol parçacıkları, çap aralığı 3 nm ila 100 nm arasında olan bir gaz (hava) içinde asılı katı ve sıvı parçacıklar olarak tanımlanır. Aerosol parçacıkları, çeşitli farklı işlemlerle doğal ve antropojenik kaynaklardan üretilir; örneğin rüzgarla savrulan süspansiyon ve fosil yakıtların ve biyokütlenin yanması. Aerosol parçacıklarının analizi, küresel iklim değişikliği, görünürlük, bölgesel hava kirliliği ve insan sağlığı üzerindeki önemli etkileri nedeniyle önemlidir. Aerosol parçacıkları yapı olarak çok karmaşıktır ve tek bir parçacık içinde binlerce farklı kimyasal bileşik içerebilir. Bu karmaşıklık nedeniyle, bu partikülleri analiz etmek için kullanılan enstrümantasyon, boyuta göre ayırma yeteneğine sahip olmalı ve gerçek zamanlı olarak kimyasal bileşimleri hakkında bilgi sağlamalıdır. Analiz için bu gereksinimleri karşılamak amacı ile kütle spektrometresi enstrümantasyonu kullanılır. Kütle spektrometrisi yüksek hassasiyet ve geniş bir moleküler kütle aralığını algılama yeteneği sağlar. Aerosol kütle spektrometrisi iki kategoriye ayrılabilir; çevrimdışı ve çevrimiçi. Çevrimdışı kütle spektrometresi, toplanan parçacıklar üzerinde gerçekleştirilir. Çevrimiçi kütle spektrometresi, gerçek zamanlı olarak tanıtılan parçacıklar üzerinde gerçekleştirilir.

Protein kütle spektrometrisi, kütle spektrometrisinin proteinlerin incelenmesine uygulanmasını ifade eder. Kütle spektrometrisi, proteinlerin doğru kütle tespiti ve karakterizasyonu için önemli bir yöntemdir ve birçok kullanımı için çeşitli yöntemler ve araçlar geliştirilmiştir. Uygulamaları arasında proteinler ve translasyon sonrası modifikasyonlarının tanımlanması, protein komplekslerinin, alt birimlerinin ve fonksiyonel etkileşimlerinin aydınlatılması veproteomikteki proteinlerin küresel ölçümü yer alır. Aynı zamanda proteinlerin çeşitli organellerdeki konumlarını belirlemek ve farklı proteinler ile membran lipidleri arasındaki etkileşimleri belirlemek için de kullanılabilir.

Silikon üzerinde desorpsiyon/iyonizasyon (DIOS), kütle spektrometresi analizi için gaz fazı iyonları oluşturmak amacı ile kullanılan yumuşak bir lazer desorpsiyon yöntemidir. DIOS, ilk yüzey tabanlı yüzey destekli lazer desorpsiyon/iyonizasyon yaklaşımı olarak kabul edilir. Önceki yaklaşımlar, bir gliserol matrisinde nanopartiküller kullanılarak gerçekleştirilmiştir, DIOS ise nano yapılı bir yüzey üzerine bir numunenin biriktirildiği ve numunenin lazer ışığı enerjisinin adsorpsiyonu yoluyla nanoyapılı yüzeyden doğrudan desorbe edildiği matris içermeyen bir tekniktir. DIOS, organik molekülleri, metabolitleri, biyomolekülleri ve peptitleri analiz etmek ve nihayetinde dokuları ve hücreleri görüntülemek için kullanılmıştır.

MS/MS veya MS2 olarak da bilinen ardışık kütle spektrometresi, kimyasal numuneleri analiz etme yeteneklerini artırmak için iki veya daha fazla kütle analizörünün ek bir reaksiyon adımı kullanılarak birbirine bağlandığı enstrümantal analiz tekniğidir. Ardışık -MS'nin yaygın bir kullanımı, proteinler ve peptitler gibi biyomoleküllerin analizidir.
Kütle spektrometrisinde çözünürlük, bir kütle spektrumunda birbirine yakınkütle-yük oranları olan iki tepe noktasını ayırt etme yeteneğinin bir ölçüsüdür.
Kütle spektrometresi yazılımı, kütle spektrometresinde veri toplama, analizi veya temsil için kullanılan bir yazılımdır.
Kütle spektrometresi görüntüleme veya İngilizce karşılığı olan mass spectrometry imaging'nin kısaltmasıyla MSI, kütle spektrometrisinde moleküllerin moleküler kütlelerine göre uzamsal dağılımını görselleştirmek için kullanılan bir tekniktir. Bir noktada bir kütle spektrumunu topladıktan sonra, numune başka bir bölgeye taşınmak üzere hareket ettirilir ve tüm numune taranana kadar bu şekilde devam eder. Ortaya çıkan spektrumda ilgilenilen bileşiğe karşılık gelen bir tepe seçilerek, MS verileri örnek boyunca dağılımını haritalamak için kullanılır. Bu, bileşik piksele göre uzamsal olarak çözümlenmiş dağılımının resimleriyle sonuçlanır. Her bir veri seti gerçek bir resim galerisi içerir, çünkü her spektrumdaki herhangi bir tepe uzamsal olarak haritalanabilir. MSI' nın genel olarak kalitatif bir yöntem olarak kabul edilmesine rağmen, bu teknikle üretilen sinyal, analitin nispi bolluğuyla orantılıdır. Bu nedenle, zorlukların üstesinden gelindiğinde miktar tayini mümkündür. Radyokimya ve immünohistokimya gibi yaygın olarak kullanılan geleneksel metodolojiler MSI ile aynı amaca ulaşsa da, aynı anda birden fazla örneği analiz etme yeteneklerinde sınırlıdırlar ve araştırmacılar çalışılan örnekler hakkında önceden bilgi sahibi olmazsa yetersiz olabilirler. MSI alanındaki en yaygın iyonizasyon teknolojileri DESI görüntüleme, MALDI görüntüleme ve ikincil iyon kütle spektrometresi görüntülemedir.

Protein dizileme, bir protein veya peptidin tamamının veya bir kısmının amino asit dizisini belirlemenin pratik işlemidir. Bu işlem, proteini tanımlamayı veya onun translasyon sonrası modifikasyonlarını karakterize etmeyi sağlayabilir. Tipik olarak, bir proteinin kısmi dizilimi, genlerin kavramsal çevirisinden türetilen protein dizilerinin veri tabanlarına referansla onu tanımlamak için yeterli bilgi sağlar.
Kütle spektrometrisinde, de novo peptid dizilimi, bir peptid amino asit dizisinin ardışık kütle spektrometrisinden belirlendiği yöntemdir.

Peptid kütle parmak izi alma, protein tanımlama için analitik bir tekniktir, burada ilgilenilen bilinmeyen protein ilk olarak daha küçük peptitlere bölünür ve bunların mutlak kütleleri MALDI-TOF veya ESI-TOF gibi bir kütle spektrometresi ile doğru bir şekilde ölçülebilir. Yöntem, 1993 yılında birkaç grup tarafından bağımsız olarak geliştirildi. Peptit kütleleri, bilinen protein dizilerini içeren bir veritabanı veya hatta genom ile karşılaştırılır. Bu, organizmanın bilinen genomunu proteinlere çeviren, daha sonra teorik olarak proteinleri peptidlere ayıran ve her bir proteinden peptidlerin mutlak kütlelerini hesaplayan bilgisayar programları kullanılarak sağlanır. Daha sonra, bilinmeyen proteinin peptitlerinin kütleleri, genomda kodlanmış her bir proteinin teorik peptit kütleleri ile karşılaştırılır. En iyi eşleşmeyi bulmak için sonuçlar istatistiksel olarak analiz edilir.
Üst-alt proteomik, kütle ölçümü ve ardışık kütle spektrometresi (MS/MS) analizi için izole edilmiş bir protein iyonunu depolamak üzere bir iyon yakalayıcı kütle spektrometresi veya MS/MS ile birlikte iki boyutlu jel elektroforezi gibi diğer protein saflaştırma yöntemlerini kullanan bir protein tanımlama yöntemidir. Üst-alt proteomik, yekpare haldeki proteinlerin analizi yoluyla benzersiz proteoformları tanımlama ve niceleme yeteneğine sahiptir. Kütle spektrometresi sırasında yekpare haldeki proteinler tipik olarak elektrosprey iyonizasyon ile iyonize edilir ve bir Fourier dönüşümü iyon siklotron rezonansı, kuadrupol iyon tuzağı veya Orbitrap kütle spektrometresinde tutulur. Ardışık kütle spektrometresi için parçalanma, elektron yakalama ayrışması veya elektron transfer ayrışması ile gerçekleştirilir. Etkili bir parçalanma, kütle spektrometresi tabanlı proteomikten önce numunenin işleme safyası için kritiktir. Proteom analizi rutin olarak yekpare haldeki proteinlerin sindirilmesini ve ardından kütle spektrometresi (MS) kullanılarak elde edilen protein tanımlamasını içerir. Üst-alt MS (jelsiz) proteomik, protein yapısını, yekpare haldeki bir kütlenin ölçümü ve ardından gaz fazında doğrudan iyon ayrışması yoluyla sorgular.
Alt-üst proteomik, kütle spektrometresi ile analizden önce proteinlerin proteolitik sindirim aracılığı ile proteinleri tanımlamak, amino asit dizilerini ve translasyon sonrası modifikasyonlarını karakterize etmek için yaygın kullanılan bir yöntemdir. Proteomikte kullanılan bu yönteme alternatif olarak mevcüt başlıca iş akışına üst-alt proteomik denir; bu yöntemde yekpare haldeki proteinler sindirim ve/veya parçalanmadan önce kütle spektrometresi içinde veya 2D elektroforez ile saflaştırılır. Esasen, alt-üst proteomik, belirli bir hücre, doku vb. numunenin protein yapısını belirlemenin nispeten basit ve güvenilir bir yoludur.

Kapiler elektroforez kütle spektrometrisi (CE-MS), kapiler elektroforezin sıvı ayırma işleminin kütle spektrometresi ile birleşiminden oluşan bir analitik kimya tekniğidir. CE-MS, tek bir analizde yüksek ayırma verimliliği ve moleküler kütle bilgisi sağlamak için hem CE hem de MS'nin avantajlarını birleştirir. Yüksek çözünürlük ve hassasiyete sahiptir, minimum hacim gerektirir ve yüksek hızda analiz yapabilir. İyonlar tipik olarak elektrosprey iyonizasyonla oluşturulur ancak matris destekli lazer desorpsiyon/iyonizasyonu veya diğer iyonizasyon teknikleriyle de oluşturulabilirler. Proteomik ve biyomoleküllerin kantitatif analizinde ve klinik tıpta kullanılmaktadır. 1987'deki tanıtımından bu yana, yeni gelişmeler ve uygulamalar CE-MS'i güçlü bir ayırma ve tanımlama tekniği haline getirmiştir.

Elektron transfer ayrışması, ardışık kütle spektrometrisinin (MS/MS) aşamaları arasında bir kütle spektrometresinde çok yüklü gaz makromoleküllerin parçalanmasına yönelik bir yöntemdir. Elektron yakalama ayrışmasına benzer şekilde ETD, büyük, çok yüklü katyonların parçalanmasına onlara elektronlaraktararak neden olur. ETD, dizi analizi için polimerler, proteinler ve peptidler gibi biyolojik moleküller ile yaygın olarak kullanılır. Bir elektronun aktarılması, peptid omurgasının c- ve z-iyonlarına bölünmesine neden olurken, translasyon sonrası modifikasyonlar değişmez. Teknik yalnızca daha yüksek yük sahibi peptid veya polimer iyonları (z>2) için iyi çalışır. Bununla birlikte, çarpışmaya bağlı ayrışmaya (CID) göre ETD, daha uzun peptitlerin veya hatta proteinlerin tümünün parçalanması açısından avantajlıdır. Bu durum, tekniği üst-alt proteomik için önemli kılar. Yöntem, Virginia Üniversitesi' nden Hunt ve arkadaşları tarafından geliştirildi.

Elektron yakalama ayrışması, ardışık kütle spektrometrisinde peptitlerin ve proteinlerin yapısının aydınlatması için gaz fazı iyonlarını parçalama yöntemidir. MS/MS'de kütle seçilmiş öncü iyonun aktivasyonu ve ayrıştırılması için en yaygın kullanılan tekniklerden biridir. Teknik düşük enerjili elektronların, sıkışmış gaz fazı iyonlarına doğrudan eklenmesini içerir.
Theraphosa leblondi toksini (TLTx), dev tarantula Theraphosabloni'nin zehrinden saflaştırılan ve dizilenen üç farklı formda oluşan bir toksindir. Bu toksin, bir geçit değiştirici olarak görev yaparak Kv4.2 voltaj kapılı potasyum kanallarını seçici olarak inhibe etmektedir.