İçeriğe atla

Penning kapanı

İmha
Kurumlar
    • ALPHA Collaboration
    • ATHENA
    • ATRAP
    • CERN
    • RHIC

Penning kapanı, homojen bir statik manyetik alan ve mekansal olarak homojen olmayan statik elektrik alanını kullanarak yüklü parçacıkları depolayan cihazlardır. Özellikle atomaltı parçacıkların özelliklerinin hassas ölçümleri için uygundurlar. Elektrik yüklü parçacıklar, sabit bir manyetik alan ve bir elektrostatik kuadrupol alanı kullanılarak bir Penning kapanında hapsedilebilir ve depolanabilir. Yüklü parçacıkları depolayarak, fiziksel özelliklerini yüksek hassasiyetle analiz etmek mümkündür. 1987 yılında Hans Georg Dehmelt, Penning tuzağında elektron ve pozitronun Landé faktörünü çok hassas bir şekilde belirlemeyi başardı. Penning kapanı konusundaki katkıları nedeniyle 1989 yılında Nobel Fizik Ödülü'ne layık görüldü.[1]

Penning kapanı, homojen bir statik manyetik alan ve mekansal olarak homojen olmayan statik elektrik alanını kullanarak yüklü parçacıkları depolayan cihazlardır. Özellikle atomaltı parçacıkların özelliklerinin hassas ölçümleri için uygundurlar.

Son zamanlarda Penning kapanı, kuantum hesaplama ve kuantum bilgi işleme fiziki gerçekleştirmede kullanılmıştır. Penning kapanları bir geonim atom olarak da bilinen ölçümlerin gerçekleştirilmesinde de kullanılır. Penning kapanları dünya çapında birçok laboratuvarda kullanılmaktadır. Örneğin, proton depolamak için Avrupa Nükleer Araştırma Merkezi'nde kullanılırlar.

Çalışma Biçimi

Penning kapanı, eksenel parçacıkları sınırlandırmak için radyal parçacıkları sınırlandırmak için güçlü bir homojen eksenel manyetik alan ve bir quadrupole elektrik alanı kullanılabilir. Bir halka ve iki ucu kapalı kapakları: statik elektrik potansiyeli üç elektrotlu bir kümesi kullanılarak oluşturulabilir. Ideal Penning kapanında halka ve uç kapakları devrim hiperboloidler vardır. Pozitif (negatif) iyon yakalama için, kapağı elektrotların halka pozitif (negatif) potansiyel göreceli tutulur. Bu potansiyel tuzak, eksen yönü boyunca iyon kapanı merkezinde bir sırt nokta oluşturur. Elektrik alanı tuzak ekseni boyunca (armonik ideal Penning kapan durumunda) salınım iyonları neden olur. Elektrik alanı ile birlikte manyetik alanın epitrokoid üzerinden izleri bir hareket ile radyal bir düzlemde hareket etmek için yüklü parçacıkların neden olur.

{-} Ve modifiye siklotron {+} frekansları radyal bir düzlemde iyonlarının yörünge hareketi iki adlandırılır Magnetron frekanslarda modları oluşmaktadır. İki frekansın toplamından sadece kütle ile elektrik şarj oranına ve manyetik alan kuvvetine bağlı olarak siklotron frekansı vardır. Bu frekans çok doğru ölçülebilir ve yüklü parçacıkların kütleleri ölçmek için kullanılabilir.Yüksek hassasiyetli kütle ölçümleri (elektron, protonun kitleleri 2 H, 20 Ne ve 28 Si) çoğu Penning kapanı tercih edilir.

Fourier dönüşümü kütle spektrometresi

Fourier transform iyon siklotron rezonans kütle spektrometrisi (aynı zamanda Fourier dönüşümü kütle spektrometrisi olarak da bilinir), bir de iyonları siklotron frekansı esas iyonlarının kitle ile şarj oranı (m/z) belirlenmesi için kullanılan kütle spektrometrisi türüdür, sabit manyetik alandır.[2]

Kaynakça

  1. ^ "The Nobel Prize in Physics 1989". NobelPrize.org (İngilizce). 14 Şubat 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Kasım 2023. 
  2. ^ "Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S., Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17, 1-35." 12 Mayıs 2007 tarihinde kaynağından arşivlendi. Erişim tarihi: 31 Ekim 2012. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektromanyetik radyasyon</span>

Elektromanyetik radyasyon, elektromanyetik ışınım, elektromanyetik dalga ya da elektromıknatıssal ışın bir vakum veya maddede kendi kendine yayılan dalgalar formunu alan bir olgudur. Elektromanyetik dalgalar, yüklü bir parçacığın ivmeli hareketi sonucu oluşan, birbirine dik elektrik ve manyetik alan bileşeni bulunan ve bu iki alanın oluşturduğu düzleme dik doğrultuda yayılan, yayılmaları için ortam gerekmeyen, boşlukta c ile yayılan enine dalgalardır. Elektromanyetik dalgalar, frekansına göre değişik tiplerde sınıflandırılmıştır. Bu tipler sırasıyla :

<span class="mw-page-title-main">Ernest Rutherford</span> Yeni Zelanda asıllı İngiliz fizikçi (1871-1937)

Ernest Rutherford, Yeni Zelandalı-İngiliz deneysel fizikçidir. 1908 yılı Nobel Kimya Ödülü sahibi.

<span class="mw-page-title-main">Elektrik yükü</span> bir nesnenin elektriksel alan ile etkileşimi neticesinde ölçülebilen fiziksel özelliği

Elektrik yükü veya elektriksel yük, bir maddenin elektrik yüklü diğer bir maddeyle yakınlaştığı zaman meydana gelen kuvvetten etkilenmesine sebep olan fiziksel özelliktir. Pozitif ve Negatif olmak üzere iki tür elektriksel yük vardır. Pozitif yüklü maddeler, diğer pozitif yüklü maddeler tarafından itilirken, negatif yüklü olanlar tarafından çekilir; negatif yüklü maddeler de negatif yüklüler tarafından itilir ve pozitif olanlar tarafından çekilir. Bir cisimde negatif yükler pozitif yüklere dominantsa, negatif yüklüdür; tersi durumdaysa pozitif yüklüdür; dominantlık söz konusu değilse yüksüzdür. Uluslararası Birim Sistemi (SI) elektrik yükünü coulomb (C) olarak adlandırırken, elektrik mühendisliğinde amper-saat (Ah) olarak ve kimyada da elemanter yük (e) olarak adlandırmak mümkündür. Q sembolü genellikle yükü ifade etmek için kullanılır. Yüklü cisimlerin birbirleriyle nasıl iletişimde olduklarını anlatan çalışma klasik elektromanyetizmadır ve kuantum mekaniğinin göz ardı edilebildiği ölçüde doğrudur.

<span class="mw-page-title-main">Proton</span> artı yüke sahip atom altı parçacık

Proton, atom çekirdeğinde bulunan artı yüklü atomaltı parçacıktır. Elektronlardan farklı olarak atomun ağırlığında hesaba katılacak düzeyde kütleye sahiptirler. Şimdiye kadar Protonların İki yukarı bir aşağı kuarktan oluştuğu kabul edilse de yeni yapılan bilimsel çalışmalarda araştırmacılar protonun kütlesinin yüzde 9'unun kuarkların ağırlığından, yüzde 32'sinin protonun içindeki kuarkların hızlı hareketlerinin meydana getirdiği enerjiden, yüzde 36'sının protonun kütlesiz parçacıkları olan ve kuarkları bir arada tutmaya yardımcı olan gluonların enerjilerinden, geriye kalan yüzde 23'lük bölümünse kuarkların ve gluonların protonun içinde karmaşık şekillerde etkileşimlerde bulunduklarında meydana gelen kuantum etkimelerden oluştuğunu buldular. Evrendeki bütün protonlar 1,6 x 10−19 değerinde pozitif yüke sahiptirler. Bu, atomlardaki çeşitli protonların birbirlerini itmelerini sağlar. Ama aradaki çekim, itmeden 100 kez daha güçlü olduğu için protonlar birbirlerinden ayrılmazlar. Protonun kütlesi elektronunkinden 1836 kat fazladır. Buna karşın, bilinmeyen bir nedenden ötürü elektronun yükü protonunkiyle aynıdır: 1,6 x 10−19 C. Atom içinde her biri (+1) pozitif elektrik yükü taşıyan taneciğe proton denir. Bu yüke yük birimi denir. Protonun yüklü elektronun yüküne eşit fakat ters işaretlidir.Bir protonun yoğunluğu yaklaşık olarak 4 x 1017 Kg/m³ 'tür. (2,5 x 1016 Lb/Ft3)

<span class="mw-page-title-main">Parçacık hızlandırıcı</span>

Parçacık hızlandırıcı, yüklü parçacıkları yüksek hızlara çıkarmak ve demet halinde bir arada tutmak için elektromanyetik alanları kullanan araçların genel adıdır. Büyük hızlandırıcılar parçacık fiziğinde çarpıştırıcılar olarak bilinirler. Diğer tip parçacık hızlandırıcılar, kanser hastalıklarında parçacık tedavisi, yoğun madde fiziği çalışmalarında senkrotron ışık kaynağı olmaları gibi birçok farklı uygulamalarda kullanılır. Şu an dünya çapında faaliyette olan 30.000'den fazla hızlandırıcı bulunmaktadır.

<span class="mw-page-title-main">İyon</span> toplam elektron sayısının toplam proton sayısına eşit olmadığı, atoma net pozitif veya negatif elektrik yükü veren atom veya molekül

İyon ya da yerdeş, bir veya daha çok elektron kazanmış ya da yitirmiş bir atomdan oluşmuş elektrik yüklü parçacıktır. Atomlar kararsız yapılarından kurtulmak ve kararlı hale gelebilmek için elektron alırlar ya da kaybederler. Bunun için de başka bir atomla ya da kökle bağ kurarlar.

<span class="mw-page-title-main">Thomson atom modeli</span> John Thomson tarafından öne sürülen günümüzde geçerliliğini yitirmiş bir atom modeli

Thomson atom modeli, atomun yapısını tanımlayan birkaç bilimsel modelden biridir. Katot ışınlarının doğasını anlamaya çalışan İngiliz fizikçi Joseph John Thomson tarafından, elektronların parçacık olarak tanımlamasından kısa bir süre sonra atomun çekirdeğinin keşfinden önce 1904 yılında ortaya atıldı. Aynı zamanda üzümlü kek modeli olarak da bilinen bu model atomdaki negatif yüklü parçacıkların yerini ve atomların yüksüzlüğünü açıklamaktadır: Modele göre atomda pozitif yüklü bir gövdenin içinde bir kekin içindeki üzümler gibi negatif yüklü elektronlar homojen olarak dağılmıştır.

<span class="mw-page-title-main">Plazma</span> gaz haldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal reaksiyonun kontrollü etkileşim süreci

Plazma, gaz hâldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal tepkimenin kontrollü etkileşim sürecine verilen genel ad. Daha kolay bir tanımla; atomun elektronlardan arınmış hâlidir.

<span class="mw-page-title-main">Siklotron</span> bir çeşit parçacık hızlandırıcı

Siklotron bir çeşit parçacık hızlandırıcıdır. Siklotronlar yüklü parçacıkları yüksek frekanslı alternatif gerilim kullanarak hızlandırır.

<span class="mw-page-title-main">Titreşim</span>

Titreşim bir denge noktası etrafındaki mekanik salınımdır. Bu salınımlar bir sarkaçın hareketi gibi periyodik olabileceği gibi çakıllı bir yolda tekerleğin hareketi gibi rastgele de olabilir.

<span class="mw-page-title-main">Saçtırma biriktirme</span>

İnce film kaplamalarda, buhar kaynağı olarak, genellikle saçtırma yöntemi kullanılmaktadır. Diğer yöntemlere göre birçok avantaj sunan bu yöntemde, katı malzeme pozitif iyonlarla bombardıman edilerek, atomlar yüzeyden kopartılır. Kaplanacak olan malzeme, hızlandırılmış iyonlar gibi enerjik parçacıklarla bombardıman edilirse, saçılan atomlar substrat (alttaş) yüzeyinde film tabakası oluştururlar.

<span class="mw-page-title-main">Yığılma diski</span> büyük bir merkezi cisim etrafında yörüngesel hareket halinde dağılmış olan malzeme tarafından oluşturulmuş bir yapı

Yığılma diski, büyük bir merkezi cisim etrafında yörüngesel hareket halinde dağılmış olan malzeme tarafından oluşturulmuş bir yapıdır. Bu merkezi cisim sıklıkla bir yıldızdır. Sürtünme kuvveti, dengesiz ışınım, manyetik hidrodinamik etkiler ve diğer kuvvetler, diskteki yörüngede bulunan malzemenin merkezi cisme doğru sarmal bir yapı oluşturmasına yol açan kararsızlıklara neden olur. Kütle çekimi ve sürtünme kuvvetleri malzemeyi sıkıştırarak sıcaklığını yükseltir ve elektromanyetik radyasyon yayılmasına neden olur. Bu radyasyonun frekans aralığı, merkezi cismin kütlesine bağlıdır. Spektrumun X ışını kısmındaki nötron yıldızları ve kara delikler etrafında bulunan genç yıldızlar ve önyıldızların yığılma diskleri, kızılötesinde ışık saçar. Yığılma disklerindeki salınım modlarının incelenmesi diskosismoloji olarak adlandırılır.

<span class="mw-page-title-main">Korona deşarjı</span>

Korona deşarjı; yüksek gerilimli bir iletkenin, etrafını saran hava gibi akışkanların iyonlaşmasıyla oluşan elektriksel bir deşarjdır. Havanın elektriksel bir kırılım geçirip iletkenleşmesi ve yükün iletkenden akışkana sızmasını sağlar. Korona deşarjı, iletkenin etrafındaki elektrik alanın, havanın dielektrik dayanımını aştığı yerlerde oluşur. Genellikle nemli ve sisli havalarda görülen bu deşarj işlemi radyal olarak dışarıya mor renkli ışık halkaları emite eder. Kendiliğinden meydana gelen korona deşarjı doğal olarak eğer elektrik alanı şiddetinin limiti sonsuza gitmiyorsa yüksek voltajlı sistemlerde açığa çıkar. Genellikle yüksek voltaj taşıyan iletkenlerin havaya bitişik sivri noktalarında, mavimsi bir parıltı olarak görülür ve bir gaz deşarj lambasıyla aynı özellikte ışık yayar.

<span class="mw-page-title-main">Enstrümental kimya</span>

Enstrümental analiz, analitleri bilimsel aletler (enstrümanlar) kullanarak inceleyen analitik kimya alanı.

<span class="mw-page-title-main">Kütle spektrometrisi</span> Kütle ölçer

Kütle spektrometrisi, İngilizce: Mass spectrometry (MS), kimyasal türleri iyonize edip oluşan iyonları Kütle-yük oranını esas alarak sıralayan bir analitik teknik. Daha basit terimler ile, bir kütle spektrumu bir numunen içindeki kütleleri ölçer. Kütle spektrometrisi birçok farklı alanda kullanılır ve kompleks karışımlara uygulandığı kadar saf numunelere de uygulanır.

<span class="mw-page-title-main">İyon tuzağı</span>

İyon tuzağı ya da iyon kapanı, genel olarak dış çevreden izole edilmiş bir sistemde, yüklü parçacıkları yakalamak için kullanılan elektrik veya manyetik alanların bir kombinasyonudur. Kütle spektrometrisi, temel fizik araştırmaları ve kuantum durumlarının kontrolü gibi çeşitli alanlarda kullanılır. En yaygın türleri, Penning tuzağı ile Paul tuzağıdır.

<span class="mw-page-title-main">Orbitrap</span>

Kütle spektrometrisinde Orbitrap, bir dış namlu benzeri elektrot ve iyonları milin etrafındaki yörünge hareketinde hapseden koaksiyel iç mil benzeri elektrottan oluşan bir iyon tuzağı kütle analizörüdür. Sıkışan iyonlardan gelen görüntü akımı tespit edilir ve frekans sinyalinin Fourier dönüşümü kullanılarak bir kütle spektrumuna dönüştürülür.

Fourier dönüşümü iyon siklotron rezonansı kütle spektrometrisi, sabit bir manyetik alandaki iyonların siklotron frekansına dayalı olarak kütle-yük oranını (m/z) belirlemek için kullanılan bir tür kütle analizörüdür (veya kütle spektrometresi).

İyon siklotron rezonansı, iyonların manyetik bir alandaki hareketiyle ilgili bir olgudur. Bir siklotrondaki iyonları hızlandırmak ve özellikle Fourier dönüşümü iyon siklotron rezonans kütle spektrometreleri ile kütle spektrometresinde iyonize bir analitin kütlelerini ölçmek için kullanılır. Ayrıca yüklü türler içermesi koşuluyla, seyreltik bir gaz karışımındaki kimyasal reaksiyonların kinetiğini izlemek için de kullanılabilir.

Üst-alt proteomik, kütle ölçümü ve ardışık kütle spektrometresi (MS/MS) analizi için izole edilmiş bir protein iyonunu depolamak üzere bir iyon yakalayıcı kütle spektrometresi veya MS/MS ile birlikte iki boyutlu jel elektroforezi gibi diğer protein saflaştırma yöntemlerini kullanan bir protein tanımlama yöntemidir. Üst-alt proteomik, yekpare haldeki proteinlerin analizi yoluyla benzersiz proteoformları tanımlama ve niceleme yeteneğine sahiptir. Kütle spektrometresi sırasında yekpare haldeki proteinler tipik olarak elektrosprey iyonizasyon ile iyonize edilir ve bir Fourier dönüşümü iyon siklotron rezonansı, kuadrupol iyon tuzağı veya Orbitrap kütle spektrometresinde tutulur. Ardışık kütle spektrometresi için parçalanma, elektron yakalama ayrışması veya elektron transfer ayrışması ile gerçekleştirilir. Etkili bir parçalanma, kütle spektrometresi tabanlı proteomikten önce numunenin işleme safyası için kritiktir. Proteom analizi rutin olarak yekpare haldeki proteinlerin sindirilmesini ve ardından kütle spektrometresi (MS) kullanılarak elde edilen protein tanımlamasını içerir. Üst-alt MS (jelsiz) proteomik, protein yapısını, yekpare haldeki bir kütlenin ölçümü ve ardından gaz fazında doğrudan iyon ayrışması yoluyla sorgular.