İçeriğe atla

Parametrik olmayan istatistik

İstatistik biliminde önemli bir yeri olan parametrik olmayan istatistik parametrik olmayan istatistiksel modeller ve parametrik olmayan çıkarımsal istatistik, özellikle parametrik olmayan istatistiksel hipotez sınamalar ile ilgilenir. Parametrik olmayan yöntemler çok defa dağılımlardan serbest yöntemler olarak da anılmaktadır, çünkü verilerin bilinen belirli olasılık dağılımı gösteren kaynaklardan geldiği varsayımına dayanmamaktadır.

Parametrik olmayan istatistik terimi çok zaman da verilerin ölçülme ölçeği özelliklerine yani orijinal olarak kategorik olmalarına (yani isimsel veya sırasal ölçekli olmasına) ve niceliksel ölçekli veriler için mümkün olan matematik işlemlerin ve istatistik ölçümlerinin geçerli olmamasına da dayanır. Örneğin parametrik olmayan istatistikte çok kere veriler için önce sıralama düzeni bulunup kullanır. Bu kategorik veriler çok kere sübjektif değerlendirmelere (örneğin tercihlere veya sübjektif karşılaştırmalara vb.) bağlanıp niceliksel ifadeler pek anlamsızdır.

Uygulamalar ve amaçlar

Parametrik olmayan istatistiksel yöntemler, veriler için çok daha az bağlayıcı varsayımlara dayandıkları için, parametrik istatistiklere kıyasla, çok daha geniş bir uygulama alanı bulmaktadırlar. Özellikle, uygulama hakkında çok derin sayısal bilgilerin olmadığı ve sadece veri sağlayanların subjektif değerlendirmelerine bağlı hallerde parametrik olmayan istatistikler genellikle kullanılmaktadır. Daha az ve daha zayıf varsayımlara dayandıkları için, niceliksel ölçekli veriler elde olsa bile, parametrik olmayan yöntemler güçlü istatistikler olarak da kullanılmaktadırlar.

Parametrik olmayan istatistiklerin diğer bir uygulama nedeni, yöntemlerin kullanılmasının ve çıkarılan sonuçların sözle açıklanmasının, parametrik istatistiklere kıyasla çok defa daha basit olmalarıdır.

Hem daha fazla güçlü olma karakteri gösterdikleri hem de daha basit olmaları dolayısıyla, birçok istatistikçiye göre parametrik olmayan istatistikler hataların ortaya çıkmasına ve istatistiklerin bilmeyerek veya bilerek yanlış kullanılması için daha kısıtlıdırlar.

Parametrik olmayan modeller

Parametrik olmayan modeller parametrik istatistik modellerden değişik olarak, kurulan modellerin bünyesinin a priori olarak teorik düşünce ve varsayımlara bağlı olarak kurulmamakta ve veriler model bünyesini tayin etmek için kullanmaktadır. Böylece anlaşılmaktadır ki parametrik olmayan terimi kurulan modellerin bütünüyle parametre kapsaması demek değildir, ancak parametrelerin sayısı ve tabiatı esnek olarak veriye bağlamakta oluşu ve bu parametrelerin veriler elde edilmeden sabit ve değişmez bir şekilde olmadığıdır. Örnekler şöyle verilebilir:

  • Bir olasılık dağılımı, sırf teorik parametrelere ve matematiksel tanımlanmaya dayanmakta parametrik olmayan istatistik için bir histogramdan çıkartılması mümkün olmaktadır.
  • Histogramdan daha uygun bir yöntem olarak daha iyi kestirimler yaratan çekirdek yoğunluk kestirimi kullanabilme imkânı vardır.
  • Parametrik olmayan regresyon veya yarı-parametrik regresyon yöntemleri, çekirdek (istatistik), spilinler ve dalgacıklar kullanılarak geliştirilmiştir.

Yöntemler

Parametrik olmayan (veya dağılımlardan serbest) çıkarımsal istatistik, çok kere istatistiksel hipotez sınaması şeklinde olan istatistiksel yöntemleri kapsayıp, parametrik istatistiklerin aksine, değerlerlendirilmekte veri olarak kullanılan örneklem istatistiklerinin olasılık dağılımları hakkında hiçbir varsayım yapılmamaktadır. Çok kullanılan parametrik olmayan istatistik yöntemleri için bir liste şöyle verilebilir:

,.

Parametrik olmayan istatistiklerin, daha geniş uygulanabilme alanları olmasına ve daha fazla güçlü olmalarına rağmen, bu avantajlara karşı olarak bazı dezavantajları da bulunur. Eğer eldeki uygulama için bir uygun parametrik sınama bulunursa, buna benzer parametrik olmayan sınamanın istatistiksel gücü çok daha düşüktür. Diğer bir şekilde ifade ile aynı güvenebilirlikle sonuç çıkartmak için parametrik olmayan istatistik için daha büyük örneklem hacmi gerekmektedir.

Kaynakça

  • Wasserman, Larry, "All of Nonparametric Statistics", Springer (2007) (ISBN 0387251456)
  • Gibbons, Jean Dickinson and Chakraborti, Subhabrata, "Nonparametric Statistical Inference", 4th Ed. CRC (2003) (ISBN 0824740521)

İçsel kaynaklar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">İstatistik</span>

İstatistik veya sayım bilimi, belirli bir amaç için veri toplama, tablo ve grafiklerle özetleme, sonuçları yorumlama, sonuçların güven derecelerini açıklama, örneklerden elde edilen sonuçları kitle için genelleme, özellikler arasındaki ilişkiyi araştırma, çeşitli konularda geleceğe ilişkin tahmin yapma, deney düzenleme ve gözlem ilkelerini kapsayan bir bilimdir. Belirli bir amaç için verilerin toplanması, sınıflandırılması, çözümlenmesi ve sonuçlarının yorumlanması esasına dayanır. Bu çerçevede yapılan işlemlerin tümüne sayımlama denir.

Varyans Analizi istatistik bilim dalında, grup ortalamaları ve bunlara bağlı olan işlemleri analiz etmek için kullanılan bir istatistiksel modeller koleksiyonudur. Varyans Analizi kullanılmaktayken belirlenmiş bir değişkenin gözlemlenen varyansı farklı değişim kaynaklarına dayandırılabilen varyans bileşenine ayrılır. En basit şekliyle varyans analizi birkaç grubun ortalamalarının birbirine eşit mi eşit değil mi olduğunu sınamak için bir çıkarımsal istatistik sınaması olur ve bu sınama iki-grup için yapılan t-test sınamasını çoklu-gruplar için genelleştirir. Eğer, çoklu değişkenli analiz için birbiri arkasından çoklu iki-örneklemli-t-sınaması yapmak istenirse bunun I. tip hata yapma olasılığını artırma sonucu doğurduğu aşikardır. Bu nedenle, üç veya daha fazla sayıda ortalamaların ististiksel anlamlığının sınama ile karşılaştırılması için Varyans Analizleri daha faydalı olacağı gerçeği ortaya çıkmaktadır.

<span class="mw-page-title-main">Betimsel istatistik</span>

Betimsel istatistik veya betimsel sayımlama istatistik bilim alanında üç temel kısmından biridir. Sayısal verilerinin derlenmesi, toplanması, özetlenmesi ve analiz edinilmesi ile ilgili istatistiktir.

İstatistiksel yığın yahut anakütle yahut evren kavramı istatistik biliminde belirli bir konudaki tüm değişkenlerin ölçülebilecek değerlerini ifade eder. Örneğin; Türkiye'de bulunan kişiler bir istatistiksel yığın değil, bunların mümkün sayısı bir istatistiksel yığın olmaktadır. Ankara'nın sayılması mümkün nüfusu ise Türkiye yığınından alınmış bir örneklemdir. Dikkat edilirse istatistiksel yığın kavramı ile, herhangi bir değişkeni içeren elemanlara değil, değişkenlerin mümkün olarak ölçülebilen veya sayılabilen içerik karakteristiğine atıf yapılmaktadır. Böylece istatistikte istatistiksel yığın ya ölçülebilir ya sayılabilir karekteristiktir ve sayısal olarak ortaya çıkabilmesi mümkündür.

İstatistiksel terimler, kavramlar ve konular listesi matematik biliminin çok önemli bir alt-bölümü olan istatistik biliminde içeriğinde bulunan konuların çok ayrıntılı olarak sınıflandırılması ile ortaya çıkarılmıştır. Milletlerarası İstatistik Enstitüsü bir enternasyonal bilim kurumu olarak istatistik bilimi konu ve terimlerini bir araya toplayıp 28 bilim dilinde karşılıklı olarak yayınlamıştır. Bu uğraşın sonucunun milletlerarası bilim camiasının büyük başarılarından biri olduğu kabul edilmektedir. Ortaya çıkartılan, istatistik bilimi içinde kullanılan ve bu bilime ait özel kavramların ve terimlerin listesi, tam kapsamlı olma hedeflidir ve böylelikle istatistik bilimi için bir Türkçe yol haritası yapılmış olmaktadır.

İstatistik biliminde normallik sınamaları bir seri parametrik olmayan istatistik sınamalar çeşididir. Normallik sınamalarının amacı verilmiş bir veri dizisinin normal dağılıma uygunluk iyiliğinin incelenmesidir. Bir sıra parametrik olmayan sınama geliştirilmiş bulunmasına rağmen birçok istatistikçi pratikte daha az kesin ve daha çok subjektif sağduyu ve ekpertiz gerektiren gösterim karşılaştırmalarını kullanmaktadır. Normallik sınamaları yalnız örneklem verilerinin doğrudan doğruya incelenmesinde kullanılmamakta, fakat özellikle ekonometrik analizlerde tek regresyon denklemi tahmininden sonra çıkan hataların normal olup olmadıklarının araştırılması için de çok kullanılmaktadırlar.

Matematik ve istatistik bilim dallarında, bir değişken için sayısal veri ölçülme ölçeği, o değişken içindeki nesneleri temsil eden sayısal değerlerin kapsadıkları bilgilerin özelliklerinin belirli bir şekilde sınıflandırmasıdır. İncelenen kavramlar Amerikan uygulamalı matematikçi Stanley Smith Stevens tarafından teklif edilip geliştirilmiştir. Stevens'in ölçekler kuramına göre bir değişken için sayısal veriler dört değişik şekilde ölçülme ölçeğine sahip olabilirler: isimsel, sırasal, aralıksal ve oransal. Bu değişik ölçeklere göre değişken verilerine, değişik matematik ve istatistiksel işlemlerin ve ölçümlerin değişik şekilde uygulanması gerekmektedir.

Değerleyici güvenebilirliği, değerleyiciler arasında uyuşma veya konkordans değerleyiciler arasında bulunan uyuşma derecesini ölçmek amacı ile kullanılan istatistiksel yöntemleri kapsar.

İstatistik bilim dalı içinde Friedman sıralamalı iki yönlü varyans analizi sonradan çok tanınmış bir iktisatçı olan Amerikan Milton Friedman tarafından ortaya atılan bir parametrik olmayan istatistik sınamasıdır.

Mann-Whitney U testi niceliksel ölçekli gözlemleri verilen iki örneklemin aynı dağılımdan gelip gelmediğini incelemek kullanılan bir parametrik olmayan istatistik testdir. Aynı zamanda Wilcoxon sıralama toplamı testi veya Wilcoxon-Mann-Whitney testi) olarak da bilinmektedir. Bu testi ilk defa eşit hacimli iki örneklem verileri için Wilcoxon (1945) ortaya atmıştır. Sonradan, Mann and Whitney (1947) tarafından değişik büyüklükte iki örneklem problemleri analizleri için uygulanıp geliştirilmiştir.

İstatistik bilim dalı içinde tekrarlama sınaması iki değer (0-1) alan veya iki değer alma şekline dönüştürülmüş bir kategorik değişken için örneklem veri serisinin ardı ardına bir rastgele sıralama ile gelip gelmediğini sınamak için kullanılan bir parametrik olmayan istatistik yöntemidir.

İstatistik bilim dalında, Spearman'ın sıralama korelasyon katsayısı veya Spearman'ın rho, bu istatistiksel ölçüyü ilk ortaya atan İngiliz psikolog Charles Edward Spearman'a atfen adlandırılmıştır. Matematik notasyon olarak çok defa eski Yunan harfi ρ ile belirtilir. Bir parametrik olmayan istatistik ölçüsüdür ve iki değişken arasındaki bağımlılık, yani korelasyon, ölçüsü olarak bulunup kullanılır. Bu demektir ki Spearman'in rho (ρ) katsayısı iki değişken için çokluluklar dağılımı hakkında hiçbir varsayım yapmayarak, bu iki değişken arasında bulunan bağlantının herhangi bir monotonik fonksiyon ile ne kadar iyi betimlenebilineceğini değerlendirmek amaçlı incelemedir.

Shapiro-Wilk Testi, örneklemelerde temel alınan istatistiksel yığının normal dağıldığı bir hipotezin sağlamasını yapan istatistiksel bir hipotez testidir. Parametrik olmayan istatistikte normallik testleri arasında yer almaktadır. Shapiro-Wilk Testi, Amerikalı istatistikçi Samuel Shapiro ile Kanadalı istatistikçi Martin Wilk tarafından 1965 yılında ortaya konuldu. Normal dağılım için analizin grafiksel bilgisini bir anahtar şeklinde normal olasılık grafiği kullanarak özetlemeye yönelik tezlerinin sonucudur.

Anderson-Darling sınaması, istatistik bilim dalında, bir parametrik olmayan istatistik sınaması olup örneklem verilerinin belirli bir olasılık dağılımı gösterip göstermediğini sınamak için, yani uygunluk iyiliği sınaması için, kullanılmaktadır. Bu sınama ilk defa 1952'de Amerikan istatistikçileri T.W.Anderson Jr. ile D.A.Darling tarafından yayınlanmıştır. Bu sınama Kolmogorov-Smirnov sınamasının değiştirilmesi ve olasılık dağılımının kuyruklarına daha çok ağırlık verilmesi ile ortaya çıkartılmıştır.

İstatistik bilim dalında, Kolmogorov-Smirnov (K-S) sınaması parametrik olmayan istatistik olup Andrey Kolmogorov ve Nikolai Smirnov adlarındaki iki Sovyet bilim insanı tarafından oluşturulmuştur.

Medyan testi, bir örneklem kümesinin belirli bir medyan değerine sahip olan bir anakütleden gelip gelmediğinin araştırılmasında kullanılan çift taraflı bir testtir. istatistik biliminde çıkarımsal istatistik alanında bir parametrik olmayan istatistik aletidir ve Pearson'un ki-kare testinın özel bir halidir. Mood'un-medyan-testi veya Westenberg-Mood-medyan-testi veya Brown-Mood-medyan-testi olarak da anılır.

Tek anakütle ortalaması için parametrik hipotez sınaması veya tek-örneklem için sınama veya μ için sınama, bir rastgele örneklem ortalaması ile bu örneklemin çekilmiş olduğunu düşündüğümüz anakütlenin μ ile belirtilen "anakütle ortalaması" hakkında bir hipotez değeri belirtilmesinin anlamlı olup olmadığını araştırmamızı sağlayan parametrik hipotez sınamasıdır.

Çıkarımsal istatistikte, boş hipotez, sıfır hipotez ya da sıfır hipotezi, beklenenin dışında bir durumun olmadığını, mesela gruplar ya da değişkenler arasında bir ilişki bulunmadığını veya ölçülen iki olgunun arasında bir fark olmadığını kabul eden genel bir önermedir. Örneğin tıpta, denenen bir tedavinin etkisiz olması; hukukta, sanığın suçsuz olması birer boş hipotezdir. Modern bilim hipotezler üretip bunları test ederek ilerler; bir boş hipotezinin belirli bir güvenilirlik aralığında istatistiksel olarak kabul ya da reddedilmesi hipotez testleriyle yapılmaktadır.

Ki-kare testi veya χ² testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan bazıları parametrik olmayan sınama ve diğerleri parametrik sınama yöntemidir. Bu çeşit istatistiksel sınamalarda test istatistiği için "örnekleme dağılımı", sıfır hipotez gerçek olursa ki-kare dağılımı gösterir veya sıfır hipotez "asimptotik olarak gerçek" olursa, eğer sıfır hipotez gerçekse ve eğer örnekleme hacmi istenilen kadar yeterli olarak büyük ise bir ki-kare dağılımına çok yakın olarak yaklaşım gösterir.

<span class="mw-page-title-main">Matematiksel istatistik</span> matematiksel yöntemlerin kullanıldığı olası istatistikler

Matematiksel istatistik, istatistiksel veri toplama tekniklerinin aksine, matematiğin bir dalı olan olasılık teorisinin istatistiğe uygulanmasıdır. Bunun için kullanılan özel matematiksel teknikler arasında matematiksel analiz, doğrusal cebir, stokastik analiz, diferansiyel denklemler ve ölçü teorisi bulunur.