İçeriğe atla

Paralel koordinatlar

Paralel koordinatlar yüksek boyutlu geometrik ve çok değişkenli verilerin analizinde yaygın olarak kullanılan gösterim biçimidir.

Bir noktalar kümesini n-boyutlu uzayda göstermek için, genellikle dik ve eşit aralıklara sahip, n adet paralel doğru içeren bir fon çizilir. n-Boyutlu uzayda bir nokta, köşe noktaları paralel eksenler üzerinde olan devamlı bir çizgi olarak gösterilir; konumu i'nci eksen üzerinde olan tepe noktası, noktanın i'nci koordinatına karşılık gelir.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Enlem</span> (Paralel)

Enlem, Ekvator'un kuzeyindeki veya güneyindeki herhangi bir noktanın Ekvator'a olan açısal mesafesi. Enlemler, kuzey ve güney enlemleri olmak üzere ikiye ayrılırlar; derece, dakika ve saniye cinsinden ifade edilirler. Dünya üzerindeki aynı enleme sahip noktaların birleşmesi ile oluşan varsayımsal çemberlere ise paralel denir.

<span class="mw-page-title-main">Coğrafi koordinat sistemi</span> koordinat sistemi

Coğrafi koordinat sistemi, dünya üstündeki herhangi bir yeri, topografik bir nokta olarak tanımlamayı sağlayan bir koordinat sistemi. Küresel koordinat sistemindeki üç bileşenden ikisi kullanılarak belirtilir. Burada aşılması gereken zorluk, dünyanın bir küre değil de jeodezi bağlamında yaklaşık olarak bir elipsoit ya da basık sferoit şeklinde olmasıdır.

Koordinat sistemi, geometride herhangi bir düzlemdeki (çokkatlıdaki) bir nokta veya başka bir geometrik elemanın konumunu tam olarak belirlemek için bir veya daha çok sayı ya da koordinat kullanılan bir sistemdir. Koordinatlar basit matematikteki reel sayılardan oluşur. Fakat soyut cebir gibi bazı alanlarda karmaşık sayılar veya elemanlardan oluşabilir. Koordinat sisteminin kullanılması, geometrik problemlerin sayısal problemlere ve tersine dönüştürülmesini sağlar. Bu analitik geometrinin temelidir.

<span class="mw-page-title-main">Kutupsal koordinat sistemi</span>

Matematikte kutupsal koordinat sistemi veya polar koordinat sistemi, noktaların birer açı ve Kartezyen koordinat sistemindeki orijinin eşdeğeri olup "kutup" olarak bilinen bir merkez noktaya olan uzaklıklar ile tanımlandığı, iki boyutlu bir koordinat sistemidir. Kutupsal koordinat sistemi, matematik, fizik, mühendislik, denizcilik, robot teknolojisi gibi birçok alanda kullanılır. Bu sistem, iki nokta arasındaki ilişkinin açı ve uzaklık ile daha kolay ifade edilebildiği durumlar için özellikle kullanışlıdır. Kartezyen koordinat sisteminde, böyle bir ilişki ancak trigonometrik formüller ile bulunabilir. Kutupsal denklemler, çoğu eğri tipi için en kolay, bazıları içinse yegâne tanımlama yöntemidir.

<span class="mw-page-title-main">Üç boyutlu uzay</span>

Üç boyutlu uzay (3D); en, boy ve derinlik algılarının hepsinin birden var olduğu ortam. Cisimler; uzunluk, genişlik ve derinliği ile gösterebiliyorsa bu durumda üç boyuttan bahsedilebilir.

<span class="mw-page-title-main">Yarıçap</span> merkezinden çevresine bir daire veya küre içinde bölüm veya yüzeyi ile uzunluğu

Yarıçap, bir daire veya kürenin özeğinin (merkezinin) çemberine olan mesafesidir. Çapın yarısına eşittir.

<span class="mw-page-title-main">Kütle merkezi</span>

Fizikte, uzaydaki ağırlığın dağılımının ağırlık merkezi, birbirlerine göre olan ağırlıkların toplamlarının sıfır olduğu noktadır. Ağırlık dağılımı, ağırlık merkezi etrafında dengelenir ve dağılan ağırlığın kütle pozisyon koordinatlarının ortalaması onun koordinatlarını tanımlar. Ağırlık merkezine göre formüle edildiği zaman mekanikte hesaplamalar basitleşir.

<span class="mw-page-title-main">Faz uzayı</span>

Matematik ve Fizik'te, bir faz uzayı içinde bir sistemin tüm olası durumlarının temsil edildiği bir uzaydır, sistemin her olası durumuna karşılık faz uzayında bir tek nokta vardır. Mekanik sistemler için, faz uzayı genellikle konum ve momentum değişkenlerinin tüm olası değerlerinden oluşur. Konum ve momentum değişkenlerinin zamana göre değişiminin bir fonksiyonunun çizimi bazen bir faz diyagramı olarak adlandırılır. Bununla beraber, bu terim genellikle fiziki bilimlerde kimyasal bir sistemin termodinamik fazlarının dengesini ve birbirlerine dönüşümünü, basıncın, sıcaklığın ve kompozisyonun bir fonksiyonu olarak gösteren bir diyagram için kullanılır.

<span class="mw-page-title-main">Eğrilik</span>

Geometri'de iki çeşit eğrilik tanımlanır. Eğrilik ve özeğrilik. Tarihte ilk olarak 2-boyutlu ve 3-boyutlu uzayda parametrik eğrilerin eğriliği incelendi. Daha sonraki aşamada 2-boyutlu ve 3-boyutlu yüzeylerin eğriliği incelendi ve ortalama eğrilik, Gaussian eğrilik gibi kavramlar ortaya çıktı.

<span class="mw-page-title-main">Çok katlı</span>

Çok katlı, topolojide soyut topolojik bir uzay. Bu uzayın her noktasının çevresi Öklit uzayına benzer. Bununla birlikte, çok katlı bir Öklit uzayı olmak zorunda değildir. Genel yapısı, bu basit yerel yapısından çok daha karmaşık olabilir. Çok katlının boyutu, yerel olarak benzediği Öklit uzayının boyutu olarak tanımlanır. Herhangi bir topolojik uzay içinse boyut kavramından söz etmek genelde olası değildir.

Cebirsel geometri, matematiğin bir dalıdır. Adından anlaşılabileceği gibi, soyut cebirin, özellikle değişmeli cebirin yöntemleri ile geometrinin dili ve problemlerini bir araya getirir. Çağdaş matematik içerisinde merkezi bir rol üstlenmesinin yanında, karmaşık analiz, topoloji, sayılar kuramı gibi matematiğin diğer dallarıyla yakın ilişkisi vardır.

Direct3D; DirectX teknolojisinin alt kümesini oluşturan API'sidir. Tamamıyla 3D teknolojisi üzerine geliştirilmiştir. Genelde Video Oyunu Geliştiricilerinin kullandığı bir kütüphanesi vardır. Bu; direct3d.h dır.

Ön bilgi: İki boyutlu bir ortamı oluşturmak için iki ordinata, üç boyutlu bir ortam oluşturmak için üç ordinata ihtiyacımız var. İki boyut için ordinatlar X ve Y olup oluşan koordinat A(X,Y) ve üç boyut için ise ordinatlar X, Y, Z ordinatlarıdır, oluşan koordinat sistemi ise; B(X,Y,Z) dir.

<span class="mw-page-title-main">İki boyutlu uzay</span>

İki boyutlu uzay ya da kısaca 2D, içinde yaşadığımız evrenin düzlemsel yansımasının geometrik modelidir. 2 boyutlu olan varlıklar sadece genişlik ve yükseklikten oluşan düzlemsel bir yüzeye sahiptirler ve derinlikleri yoktur.

<span class="mw-page-title-main">Boyut</span> matematiksel bir uzayda maksimum bağımsız yön sayısı

Fizik ve matematikte bir uzayın ya da nesnenin boyutu, gayriresmî olarak bu uzay ve nesne üzerindeki herhangi bir noktayı belirlemek için gereken minimum koordinat sayısı olarak tanımlanır. Bir doğru üzerindeki bir noktayı tanımlamak için bir koordinat gerektiğinden doğrunun bir boyutu vardır. Düzlem, kare ya da daire yüzeyinin iki boyutu vardır, çünkü bu yüzeyler üzerindeki herhangi bir noktayı tanımlamak için iki koordinata ihtiyaç vardır. Yine aynı şekilde küre, silindir ya da küpün içindeki bir noktayı tanımlamak için üç koordinat gerektiğinden bu boşluk üç boyutludur. İzafiyet Teorisi'nde ise zaman, dördüncü ve uzaysal olmayan boyut olarak eklenir.

<span class="mw-page-title-main">Öklid uzayı</span> Öklid geometrisinin yüksek boyutlu vektör uzaylarına genelleştirilmesi

Matematikte Öklid uzayı, Öklid geometrisinin üç boyutlu uzayıdır ve bu kavramlar, çok boyutlu olarak genelleştirilir. “Öklid” terimi bu uzayları, Öklid geometrisi olmayan eğimli uzaydan ve Einstein'nın genel görelilik kuramından ayırt eder. Bu adı Yunan matematikçi Öklid'den dolayı almıştır.

<span class="mw-page-title-main">Vektör alanı</span> oklid uzayının seçilen bir alt kümesinin her bir noktasında yöneyin belirlenmesidir.

Yöney alan, Öklid uzayının seçilen bir alt kümesinin her bir noktasında yöneyin belirlenmesidir. Düzlemdeki bir yöney alanı, her biri düzlemdeki bir noktaya ilişik, yönü ve büyüklüğü olan oklar topluluğu olarak düşünülebilir.

<span class="mw-page-title-main">Minkowski diyagramı</span>

Minkowski diyagramı ya da uzay zaman diyagramı, 1908 yılında Hermann Minkowski tarafından geliştirilen ve uzay ve zaman, Özel görelilik teorisi içinde yer alan uzay ve zamanın, özelliklerinin örneklerini temin etmeyi sağlayan diyagram. Zaman genişlemesi ve uzunluk kısalması gibi fenomenlere ilişkin sayısal yönden bir kolay anlaşılabilme özelliği sağlıyordu ve bunu yaparken de matematiksel denklemleri kullanmıyordu.

Fizikte, hayat çizgisi bir objenin 4 boyutlu uzayda işlediği yola denir. Objenin geçmiş mekanını her an takip etmeye de bu ad verilir. Hayat çizgisi yörüngeden ayrı bir kavramdır. Bu kavramlar zaman boyutuyla ayrılır. Ve genelde yörüngelerden daha geniş bir alanı temsil ederler, diğerlerine oranla özel göreliliğin gerçek doğasını ortaya çıkarırlar. Bu fikir Hermann Minkowski tarafından ortaya atılmıştır.Bu terim, genelde Görelilik Teorisinde kullanılır.

<span class="mw-page-title-main">Fotogrametri</span>

Fotogrametri, fotoğrafik görüntüleri ve elektromanyetik radyant görüntü ve diğer fenomenlerin desenlerini kaydetme, ölçme ve yorumlama sürecinde fiziksel nesneler ve çevre hakkında güvenilir bilgi edinme bilim ve teknolojisidir.

<span class="mw-page-title-main">Apsis ve ordinat</span> apsis noktanın bulunduğu yeri saptamaya yarayan ana çizgilerden yatay olanıdır Ordinat ise ana çizgilerden dikey olanıdır

Yaygın kullanımda, apsis, yatay (x) ekseni ve ordinat, standart iki boyutlu bir grafiğin dikey (y) eksenini ifade eder.