İçeriğe atla

Paralel

a ve l doğruları arasındaki uzaklık (r) doğrular boyunca aynıdır.

Paralel veya koşut[1], uzunluğu boyunca birbirinden eşit uzaklıkta bulunan doğru ya da düzlemlerin birbirlerine göre durumlarını tanımlamakta kullanılan bir sıfat.[2] Parallellik Öklid evreninde mümkündür ve Öklid'in paralel aksiyomunun temelini oluşturur.

Matematikte paralellik sembolü ile ifade edilir. Örneğin ifadesi "AB doğrusu ile CD doğrusu paraleldir," anlamına gelir.

Paralel aksiyomu

Paralel aksiyomuna göre iki doğru ile bunları kesen üçüncü bir doğru arasındaki iç açıların toplamı (α+β) 180° den küçükse, bu doğrular açıların bulunduğu tarafta yeterli kadar uzatıldıklarında mutlaka kesişirler.

Paralel aksiyomu ya da paralel postülası, Öklidci geometriyi oluşturan 5 aksiyomdan birisidir. Bu aksiyoma göre bir düzlemdeki herhangi bir doğru üzerinde bulunmayan bir noktadan, o doğruya paralel sadece bir doğru çizilebilir.[3] Öklid'in diğer aksiyomlarının aksine kendinden ispatlı[4] değildir.[3] 19. yüzyılda Nikolay Lobachevsky ve János Bolyai'nin (1802–60) birbirlerinden bağımsız olarak paralel aksiyomu değiştirmeleri, tamamen kararlı olan Öklidci olmayan geometrinin ortaya çıkmasını sağlamıştır.[3]

Kaynakça

  1. ^ "TDK Güncel Türkçe Sözlük". 29 Aralık 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Ocak 2024. 
  2. ^ "parallel." Oxford Dictionary of English 2e, Oxford University Press, 2003.
  3. ^ a b c "parallel postulate." Encyclopædia Britannica Ultimate Reference Suite. Chicago: Encyclopædia Britannica, 2011.
  4. ^ self-evident Ç.N.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Pisagor teoremi</span> Öklid geometrisinde bir dik üçgenin üç kenarı arasındaki bağıntı

Pisagor teoremi veya Pisagor bağıntısı, Öklid geometrisinde üçgenin kenarları arasındaki temel ilişkiyi kuran ilk teoremlerden biridir. Teoreme gerçek hayattan örnek olarak telli çalgıları gösterilebilir; 'telin uzunluğu arttıkça titreşim artar' prensibine dayanır. Pisagor'un denklemi olarak da isimlendirilen bu teorem, a, b ve c kenarlarının arasındaki ilişkiyi şu şekilde açıklar:

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Geometri</span> matematiğin uzamsal ilişkiler ile ilgilenen alt dalı

Geometri, matematiğin uzamsal ilişkiler ile ilgilenen alt dalıdır. Yunanca Γεωμετρία "Geo" (yer) ve "metro" (ölçüm) birleşiminden türetilmiş bir isimdir.

<span class="mw-page-title-main">Öklid geometrisi</span> Öklide atfedilen matematiksel-geometrik sistem

Öklid geometrisi, İskenderiyeli Yunan matematikçi Öklid’e atfedilen matematiksel bir sistemdir ve onun Elemanlar adlı geometri üzerine ders kitabında tarif edilmektedir. Öklid'in yöntemi, sezgisel olarak çekici küçük bir aksiyom seti varsaymaktan ve bu aksiyomlara dayanarak birçok başka önermeyi (teoremleri) çıkarmaktan ibarettir. Öklid'in sonuçlarının çoğu daha önceki matematikçiler tarafından ifade edilmiş olsa da, Öklid, bu önermelerin kapsamlı bir tümdengelimli ve mantıksal sisteme nasıl uyabileceğini gösteren ilk kişi oldu. Elemanlar, ilk aksiyomatik sistem ve resmi ispatın ilk örnekleri olarak ortaokulda (lise) hala öğretilen düzlem geometrisi ile başlar. Üç boyutlu katı geometrisi ile devam ediyor. Elemanlar’ın çoğu, geometrik dilde açıklanan, şimdi cebir ve sayı teorisi olarak adlandırılan şeyin sonuçlarını belirtir.

<span class="mw-page-title-main">Öklid</span> Yunan matematikçi, aksiyomatik geometrinin mucidi

Öklid (Grekçe: Εὐκλείδης Eukleídēs; MÖ 330 - 275 yılları arasında yaşamış, İskenderiyeli bir matematikçidir. Megaralı Öklid'den ayırmak için bazen İskenderiyeli Öklid olarak anılır, genellikle "geometrinin kurucusu" veya "geometrinin babası" olarak anılan bir Yunan matematikçiydi. Ptolemy I döneminde İskenderiye'de aktifti. Elemanlar, yayınlandığı zamandan 19. yüzyılın sonlarına veya 20. yüzyılın başlarına kadar matematik öğretimi için ana ders kitabı olarak hizmet veren, matematik tarihindeki en etkili çalışmalardan biridir. Elemanlar’da, Öklid, küçük bir aksiyom setinden, şimdi Öklid geometrisi olarak adlandırılan şeyin teoremlerini çıkardı. Öklid ayrıca perspektif, konik kesitler, küresel geometri, sayı teorisi ve matematiksel kesinlik üzerine eserler yazdı.

Alman matematikçi David Hilbert'in 1871'deki bir makalesinde incelemiş olduğu hiperbolik geometri'nin Poincaré modeli için verdiği cebirsel geometrik yapı. Doğruların uçlarının oluşturduğu bir cisim ve bu cisim üzerinde tanımlı bir çarpımsal uzaklık fonksiyonu içeriyor. Öklit geometrisine ters olarak, doğruların koordinatları ve noktaların denklemleri bulunuyor.

Hiperbolik geometri, Öklid geometrisinden bir aksiyomla ayrılır. Öklid'in paralel aksiyomunun tersini doğru olarak kabul eden geometride bir doğrunun dışındaki bir noktadan birden çok (sonsuz) tane paralel doğru geçebilir. Bunun anlamı hiperbolik geometride Öklid geometrisinin aksine herhangi bir açı oluşturmak için ışınların, doğru ve doğru parçalarının kesişmesine gerek yoktur. Bunun yerine düz olmayan tek bir doğrunun varolması yeterlidir. Ayrıca bir üçgenin iç açıları toplamı her zaman iki tane dik açıdan küçüktür.

<span class="mw-page-title-main">Menelaus teoremi</span> Bir üçgenin her bir kenar doğrusundan tepe noktası olmayan birer nokta olmak üzere üç noktanın, ancak ve ancak her üç kenar doğrusu üzerinde belirledikleri işaretli oranların çarpımı -1 ise eş doğrusal olduğunu belirten Öklid geometri

İskenderiyeli Menelaus'a izafe edilen Menelaus teoremi düzlemsel geometride üçgenler üzerine bir teoremdir. , ve noktalarından oluşan üçgeninde , ve doğruları üzerinde bulunan ve üçgenin köşelerinden ayrık , ve noktalarının aynı doğru üzerinde olabilmesi ancak ve ancak:

<span class="mw-page-title-main">Dik</span>

Geometride, iki doğru veya iki düzlem kesiştiklerinde oluşturdukları komşu açılar birbirine eşitse dik olarak kabul edilir.

<span class="mw-page-title-main">Levi-Civita paralelkenarımsı</span>

Diferansiyel geometrinin matematiksel alanı içinde, Levi-Civita paralelkenarımsı bir eğri uzay içinde bir dörtlüyanal Öklidyen düzlem içinde onun bir paralelkenar genelleme inşasıdır. Bu isim araştırmacı Tullio Levi-Civitaya ithafendir. Bir paralelkenar gibi, bir paralelkenarımsının iki zıt yüzleri AA′ ve BB′ paralel düz olmasına rağmen, ancak dördüncü kenar AB′ değil, genel olarak, paralel ya da AB kenarı boyunca aynı uzunlukta olacaktır.

<span class="mw-page-title-main">Desargues teoremi</span>

Projektif geometride, Desargues teoremi, adını Girard Desargues'den alır, şunu belirtir:

İki üçgen, ancak ve ancak merkezi olarak perspektif içindeyse eksenel olarak perspektif içindedir.

Thales teoremi veya temel orantı teoremi olarak da bilinen kesişme teoremi, kesişen iki çizginin bir çift paralelle kesilmesi durumunda oluşturulan çeşitli çizgi parçalarının oranları hakkındaki temel geometride önemli bir teoremdir. Benzer üçgenlerdeki oranlarla ilgili teoreme eşdeğerdir. Geleneksel olarak Yunan matematikçi Thales'e atfedilir.

<span class="mw-page-title-main">Açıortay teoremi</span> Bir üçgeni bölen iki parçanın göreli uzunlukları hakkında

Geometride açıortay teoremi, bir üçgenin kenarının karşı açıyı ikiye bölen bir çizgiyle bölündüğü iki parçanın göreli uzunluklarıyla ilgilidir. Göreli uzunluklarını, üçgenin diğer iki kenarının göreli uzunluklarına eşitler.

<span class="mw-page-title-main">Crossbar (Pasch) teoremi</span> Diğer iki ışın arasındaki bir ışın, ilk iki ışın arasındaki herhangi bir çizgi parçasını keser.

Geometride Crossbar (Pasch) teoremi, ışını ışını ile ışını arasındaysa, ışınının doğrusu parçasını keseceğini belirtir.

<span class="mw-page-title-main">Gnomon teoremi</span> Bir gnomonda meydana gelen belirli paralelkenarlar eşit büyüklükte alanlara sahiptir.

Gnomon teoremi, bir gnomon'da meydana gelen belirli paralelkenarların eşit büyüklükte alanlara sahip olduğunu belirtir. Gnomon, geometride benzer bir paralelkenarı daha büyük bir paralelkenarın bir köşesinden çıkararak oluşturulan bir düzlem şeklidir; veya daha genel olarak, belirli bir şekle eklendiğinde, aynı şekle sahip daha büyük bir şekil oluşturan bir şekildir.

<span class="mw-page-title-main">Geometri tarihi</span> Geometrinin tarihsel gelişimi

Geometri, mekansal ilişkilerle ilgilenen bilgi alanı olarak ortaya çıkmıştır. Geometri, modern öncesi matematiğin iki alanından biriydi, diğeri ise sayıların incelenmesi yani aritmetikti.

Dış açı teoremi, bir üçgenin bir dış açısının ölçüsünün, uzak iç açılarının ölçülerinden daha büyük olduğunu belirten Ökllid'in Elemanlar'ı Önerme 1.16'dır. Bu, mutlak geometride temel bir sonuçtur çünkü ispatı paralellik postülatına bağlı değildir.

<span class="mw-page-title-main">Catalan altıgen teoremi</span>

Adını Eugène Charles Catalan'dan alan Catalan altıgen teoremi, aşağıdakileri ifade eden bir temel geometri teoremidir: Öklid düzleminde köşe noktaları olan bir altıgende üç köşegeni eşit uzunlukta ve zıt kenarları paralel olan, veya veya , bir altıgenin temel taşları her zaman bir çember üzerindedir.

<span class="mw-page-title-main">Hjelmslev teoremi</span>

Geometride, Danimarkalı matematikçi Johannes Hjelmslev'in adını taşıyan Hjelmslev teoremi, bir doğru üzerindeki , , noktaları, aynı çizgideki başka bir doğrunun , , noktalarına izometrik olarak eşlenirse düzlem, daha sonra , , doğru parçalarının orta noktaları da bir doğru üzerindedir.

Matematikte Arşimet dışı geometri, Arşimet aksiyomunun reddedildiği geometri biçimlerinin adıdır. Dehn düzlemi bu geometrilerin bir örneğidir. Bu örnekten de anlaşılabileceği üzere, Arşimet dışı geometriler Öklid geometrisinden önemli ölçüde farklı özelliklere sahip olabilir.