İçeriğe atla

Parçacık istatistiği

Parçacık istatistiği, çoklu parçacıklar istatistiksel mekaniğinin özel tanımıdır. Ana kavram, istatistiksel veriler aracılığıyla ayrı parçacıkların parametreleri belirlenirken, büyük sistemin özelliklerinin bir bütünmüş gibi vurgulanmasıdır. Veri grubu benzer özellikler gösteren parçacıklar içerdiğinde, bu parçacıkların numaraları parçacık numarası olarak adlandırılır ve “N” ile gösterilir.

Klasik İstatistikler

Klasik istatistiksel mekaniğinde sistemdeki bütün parçacıklar (ana ve bileşik parçacıklar, atomlar, moleküller, elektronlar vb.) ayırt edilebilir olarak düşünülür. Bu sistemdeki her bir taneciğin işaretlenebileceği ve izlenebileceği anlamına gelir. Sonuç olarak, herhangi 2 taneciğin sistemde yerinin değişmesi, bütünüyle farklı bir sistem düzenine sebep olur. Ayrıca sisteme ulaşılabilir bir durum verildiğinde birden fazla taneciğin sistemde yer almasında herhangi bir sınırlama yoktur. Klasik istatistik Maxwell – Boltzman İstatistiği olarak adlandırılır.

Kuantum İstatistikler

Kuantum doluluk nomogramları.

Kuantum mekaniğini klasik istatistikten ayıran ana özellik, parçacıkların parçacık çeşidinin birbirlerinden ayırt edilebilmesidir. Bu durum benzer parçacıklar içeren bir birleşmede, iki parçacığın değişimi sistemde yeni bir düzene neden olmamaktadır. (Kuantum mekaniğinde bu durum, sistemin dalga fonksiyonunun değişen parçacıklara göre belirli bir aşamaya kadar sabit olması olarak açıklanır.) Sistemin farklı tip parçacıklara sahip olduğu durumda (örneğin proton ve elektron gibi) sistemin dalga fonksiyonu, birleşen iki parçacık için farklı olmak üzere belirli bir aşamaya kadar sabittir.

Taneciğin uygun tanımı onun basit hatta çok ufak olduğunu gerekli kılmaz ancak düşünülen fiziksel problemle alakalı serbestlik derecelerinin (ya da iç durumlarının) bilinmesini gerekli kılar. Bütün kuantum parçacıkları (lepton ve baryon gibi) evrende 3 dönüştürülebilir hareket (dalga fonsiyonlarıyla ifade edilir) ve 1 ayrı (spin olarak bilinen) serbestlik derecesine sahiptir. Gittikçe karmaşık hale gelen parçacıklar, devamlı olarak daha fazla sayıda içsel serbestlik (örneğin atomda çeşitli kuantum numaraları gibi) elde ederler ve özdeş parçacıkların oluşturduğu bir grubun içsel durumlarının sayısı onların parçacık numalarının büyümesini önlediğinde, kuantum istatistiğinin etkisi göz ardı edilebilir hale gelir. Bu yüzden Helyum sıvısı ya da Amonyak gazı (onların molekülleri büyüktür ancak akla uygun sayıda içsel duruma sahiptirler) düşünüldüğünde kuantum istatistiği kullanışlıdır fakat makro moleküllerin oluşturduğu sistemler için kullanışsızdır.

Klasik istatistik ve kuantum istatistiğinin sistem tanımlarının arasındaki bu fark bütün kuantum istatistikleri için temel olmasına karşın, kuantum parçacıkları sistem simetrisine dayanan 2 sınıfa daha ayrılır. Dönme – istatistik teoremi, 2 özel çeşitin birleşimsel simetrisi ile 2 özel çeşitin dönme simetresini (bozon ve fermion olarak adlandırılan) birleştirir.

Bose-Einstein İstatistiği

Bose-Einstein istatistiğinde (B-E istatistiği) karşılıklı değişen herhangi 2 parçacık sistemin son durumundan simetrik bir durumda ayrılırlar. Başka bir deyişle, değişimden önceki sistemin dalga fonksiyonuyla, değişimden sonraki sistemin dalga fonksiyonu birbirine eşittir.

Sistem dalga fonksiyonunun kendi kendine değişmediğini vurgulamak önemlidir. Bu, sistemin durumu üzerinde önemli sonuçlar doğurur: parçacıkların yer aldığı bir durumda (sisteme erişimde) parçacık sayısında herhangi bir sınırlama yoktur. Bose-Einstein istatistiğine uyan parçacıkların, tam sayıda dönülere sahip olduğu bulunmuştur ve sonuç olarak bunlar bozon (Bose'dan sonra adlandırılmıştır) olarak isimlendirilmiştir. Bozon örnekleri, foton ve Helyum-4 (atom ve çekirdek bir arada) içerirler. B-E istatistiğine uyan sistem çeşitlerinde birisinde, bütün parçacıkların birleşmesi aynı durumda gerçekleşir.

Fermi-Dirac İstatistiği

Fermi – Dirac istatistiğinde karşılıklı değişen herhangi 2 parçacık sistemin son durumundan asimetrik bir durumda ayrılırlar. Başka bir deyişle, değişimden önceki sistemin dalga fonksiyonuyla, değişimden sonraki sistemin dalga fonksiyonu bütünüyle birbirlerinin eksi işaretlisidir.

B-E istatistiğinde olduğu gibi sistem dalga fonksiyonunun kendi kendine değişmez. Fermi – Dirac istatistiğindeki negatif işaret aşağıdaki yolla anlaşılabilir:

Karşılıklı değişen parçacıkların aynı duruma ait olduğu farz edilir çünkü parçacıkların birbirlerinden ayırt edilemediği düşünülür ve parçacıkların koordinatlarının değişmesinin sistemin dalga fonksiyonunda herhangi bir değişime yol açmaması gerekir (çünkü varsayımımıza göre parçacıklar aynı durumdadır). Bu sebeple, benzer koşulların değişiminden önceki dalga fonksiyonuyla, benzer koşulların değişiminden sonraki dalga fonksiyonu birbirine eşittir.

Yukarıdaki cümleyle, Femi – Dirac sisteminin asimetrisinin birleştirilmesi, değişimden önceki sistemin dalga fonksiyonunun 0'a eşit olduğu sonucunu çıkartmamıza neden olur.

Bu durum gösterir ki, Fermi – Dirac istatistiğinde 1'den fazla parçacık sisteme erişme durumunu meydana getiremez. Buna “Pauli’nin dışarıda bırakma prensibi” adı verilir.

Parçacıkların yarı-tamamlayıcı dönülerinin (ya da fermiyonları) Fermi – Dirac istatistiğine uyum gösterdiği ortaya çıkarılmıştır. Bu fermiyonlar elektron, proton, Helium-3 vb. (atom ve çekirdek ile birlikte) içerirler.

İlgili Araştırma Makaleleri

Parçacık fiziğinde, bozonlar Bose-Einstein yoğunlaşmasına uyan parçacıklardır; Satyendra Nath Bose ve Einstein'a atfen isimlendirilmişlerdir. Fermi-Dirac istatistiklerine uyan fermiyonların tersine, farklı bozonlar aynı kuantum konumunu işgal eder. Böylece, aynı enerjiye sahip bozonlar uzayda aynı mekânı işgal edebilirler. Bu nedenle her ne kadar parçacık fiziğinde her iki kavram arasındaki ayrım kesin belirgin değilse de, fermiyonlar genelde madde ile bileşikken, bozonlar sıklıkla güç taşıyıcı parçacıklardır.

Fermiyon, parçacık fiziğinde, Fermi-Dirac istatistiğine uyan parçacıktır. Başka bir deyişle, Enrico Fermi ve Paul Dirac'ın gösterdiği üzere, Bose-Einstein istatistiğine sahip bozonların aksine fermiyonlar, belirtilen zamanda sadece bir kuantum durumuna karşılık gelebilen parçacıklardır. Eğer iki ayrı fermiyon uzayda aynı yerde tanımlanmışsa her bir fermiyonun özelliği birbirinden farklı olmak zorundadır. Örnek olarak, iki elektron bir çekirdeğin etrafında aynı orbitalde bulunacaklarsa, bu kez aynı spin durumunda olamazlar ve her orbitalde elektronun biri yukarı diğeri aşağı spin durumundadır.

<span class="mw-page-title-main">Pauli dışarlama ilkesi</span> Kuantum mekaniği prensibi: iki özdeş fermiyon aynı anda, aynı kuantum halinde bulunamazlar.

Pauli dışarlama ilkesi ya da Pauli dışlama ilkesi, iki ya da daha çok özdeş fermiyonun aynı kuantum durumda olamayacağını belirten bir kuantum mekaniği yasasıdır. Bu yasa, kuramsal fizikçi Wolfgang Pauli tarafından 1925 yılında bulunmuştur. İlk bulunuşunda yasa yalnızca elektronlar için geçerliyken, 1940 yılında Spin-istatistik teoreminin bulunmasıyla birlikte bütün fermiyonları kapsayacak biçimde genişletilmiştir.

Schrödinger denklemi, bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adında bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini gösteren denklemi ilk bulan Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. 1900 yılında Max Planck'ın ortaya attığı "kuantum varsayımları"nın ardından, 1924'te ortaya atılan de Broglie varsayımı ve 1927'de ortaya atılan Heisenberg belirsizlik ilkesi bilim dünyasında yeni ufukların doğmasına sebep olmuştur. Bu gelişmeler Max Planck'ın kuantum varsayımları ve Schrödinger'in dalga mekaniği ile birleştirilerek kuantum mekaniğini ortaya çıkarmıştır.

<span class="mw-page-title-main">Atomaltı parçacık</span> Atomdan küçük, atomu da oluşturan maddeler.

Atomdan küçük, atomu da oluşturan maddeler. En çok bilinenleri, alt parçacıklardan (kuarklardan) oluşan proton ve nötron; lepton olan elektrondur. Yapısı tamamen keşfedilmemiş atomaltı parçacıklara örnek olarak foton (ışık), bozon, mezon, fermiyon, baryon ve graviton verilebilir.

<span class="mw-page-title-main">Dalga fonksiyonu</span>

Kuantum fiziğinde dalga fonksiyonu izole bir kuantum sistemindeki kuantum durumunu betimler. Dalga fonksiyonu karmaşık değerli bir olasılık genliğidir ve sistem üzerindeki olası ölçümlerin olasılıklarının bulunmasını sağlar. Dalga fonksiyonu için en sık kullanılan sembol Yunan psi harfidir ψ ve Ψ.

<span class="mw-page-title-main">Paul Dirac</span> İngiliz teorik fizikçi

Paul Adrien Maurice Dirac, İngiliz teorik fizikçi ve matematikçi. Kuantum mekaniğinin kurucularındandır. Fermiyonların davranışını açıklayarak antimaddenin keşfine olanak veren ve kendi adı verilen Dirac denklemi ile tanınır. Dirac, 1933 Nobel Fizik Ödülü'nü Erwin Schrödinger ile paylaşmıştır.

<span class="mw-page-title-main">Bose-Einstein yoğunlaşması</span>

Bose-Einstein yoğunlaşması (BEY), parçacıkları bozonlardan oluşan maddelerin en alt enerji seviyesinde yoğunlaştığı, kuantum etkilerinin gözlenebildiği maddenin bir halidir. Bozonik atomlar için, seyreltilmiş gaz halinde lazer soğutması aracılığıyla mutlak sıfır sıcaklığına doğru inilerek bu hale geçiş yani yoğunlaşma sağlanabilir. Atomların klasik gazlardan farklı olarak Maxwell-Boltzmann istatistiği yerine Bose-Einstein istatistiğine makroskobik olarak/büyük ölçekte uyması BEY'nin belirleyici özelliğidir.

<span class="mw-page-title-main">Faz uzayı</span>

Matematik ve Fizik'te, bir faz uzayı içinde bir sistemin tüm olası durumlarının temsil edildiği bir uzaydır, sistemin her olası durumuna karşılık faz uzayında bir tek nokta vardır. Mekanik sistemler için, faz uzayı genellikle konum ve momentum değişkenlerinin tüm olası değerlerinden oluşur. Konum ve momentum değişkenlerinin zamana göre değişiminin bir fonksiyonunun çizimi bazen bir faz diyagramı olarak adlandırılır. Bununla beraber, bu terim genellikle fiziki bilimlerde kimyasal bir sistemin termodinamik fazlarının dengesini ve birbirlerine dönüşümünü, basıncın, sıcaklığın ve kompozisyonun bir fonksiyonu olarak gösteren bir diyagram için kullanılır.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

Yoğun madde fiziği, maddenin yoğun hallerinin fiziksel özellikleriyle ilgilenen bir fizik dalıdır. Yoğun madde fizikçileri bu hallerin davranışını fizik kurallarını kullanarak anlamaya çalışır. Bunlar özellikle kuantum mekaniği kuralları, elektromanyetizma ve istatistiksel mekaniği içerir. En bilinen yoğun fazlar katı ve sıvılardır, harici yoğun fazlar ise düşük sıcaklıktaki bazı materyaller tarafından gösterilen üstünileten faz, atom kafeslerindeki dönüşlerin ferromanyetik ve antiferromanyetik fazları ve soğuk atom sistemlerinde bulunan Bose-Einstein yoğunlaşması. Araştırma için uygun sistemlerin ve fenomenlerin çeşitliliği yoğun madde fiziğini modern fiziğinin en aktif alanı yapıyor. Her 3 Amerikan fizikçiden biri kendini yoğun madde fizikçisi olarak tanımlıyor ve Yoğun Madde Fiziği Bölümü Amerikan Fizik Topluluğu’ndaki en geniş bölümdür. Bu alan kimya, malzeme bilimi ve nano teknoloji ile örtüşür ve atom fiziği ve biyofizikle de yakından ilgilidir. Teorik yoğun madde fiziği teorik parçacık ve nükleer fizikle önemli kavramlar paylaşır.

<span class="mw-page-title-main">Alan (fizik)</span>

Alan, fizik kuramlarında kullanılan, matematikteki cebirsel alanın tüm özelliklerini taşıyan terim. Genellikle bu etki 100 nanometre ve daha küçük skalalarda etkili olur. Bu etki nanoteknolojiyle aynı ölçeğe denk gelir. Bir alan mekan ve zaman içinde her bir nokta için bir değeri olan bir fiziksel miktardır. Örneğin, hava durumu, rüzgâr hızı uzayda her nokta için bir vektör atayarak tarif edilmektedir. Her bir vektör bu noktada hava hareketinin hızını ve yönünü temsil eder.

<span class="mw-page-title-main">Kuantum alan teorisi</span> hareketli parçacık sistemlerinin kuantizasyonuyla ilgilenen parçacık mekaniğiyle benzer olarak, alanların hareketli sistemlerine parçacık mekaniğinin uygulamasıdır

Kuantum Alan Teorisi (METATEORİ); Klasik Birleşik Alan (KAT) Teorilerini, Özel Görekliliği (SRT), Kuantum mekaniği (KM) teorilerini tek bir teorik çerçeve altında toplayan bir üst teoridir.

<span class="mw-page-title-main">Kopenhag yorumu</span> fizikçi Niels Bohrun oluşturduğu kuantum mekaniği ile ilgili görüşler ve ilkeler dizisi

Kopenhag yorumu, genel olarak fizikçi Niels Bohr'un oluşturduğu kuantum mekaniği ile ilgili görüşler ve ilkeler dizisi. Makro ve mikro durumların ayrı fiziksel ilkelerle inceleneceğini belirtir. Fizikte gözlemin rolünü öne çıkarmasıyla bir devrim niteliğindedir.

<span class="mw-page-title-main">Temel parçacık</span> Başka parçacıklardan oluştuğu bilinmeyen parçacıklar.

Temel parçacıklar, bilinen hiçbir alt yapısı olmayan parçacıklardır. Bu parçacıklar evreni oluşturan maddelerin temel yapıtaşıdır. Standart Model'de kuarklar, leptonlar ve ayar bozonları temel taneciklerdir.

Dalga işlevinin çöküşü, kuantum dilinde, gözlemcinin de katılımcı olması durumu.

<span class="mw-page-title-main">EPR paradoksu</span> kuantum mekaniğinin Kopenhag yorumuna karşı erken ve etkili bir eleştiri

EPR paradoksu, kuantum mekaniğinin Kopenhag yorumuna karşı erken ve etkili bir eleştiridir. Albert Einstein ve arkadaşları Boris Podolsky ve Nathan Rosen kuantum mekaniğinin daha önce fark edilmemiş fakat belli sonuçlara sahip olan kabul edilmiş denklemlendirimini meydana çıkaran bir düşünce deneyi hazırladılar, ancak zamanla bu denklemlendirimler mantıksız göründü. Açıklanan senaryo kuantum dolanıklık olarak bilinen bir olay içeriyordu.

<span class="mw-page-title-main">Majorana fermiyonu</span>

Majorana fermiyonu veya diğer adıyla majorana parçacığı, kendi karşıt parçacığına sahip olan fermiondur. 1937 tarihinde Ettore Majorana tarafından hipotez edilmiştir. İsimlendirme bazen fermionların kendi karşıt parçacığı olmadığını savunan Dirac fermion'a karşı olarak kullanılır.

<span class="mw-page-title-main">Cooper çifti</span>

Yoğun madde fiziğinde, Cooper iletken çifti veya bina kontrol sistemi (BCS) iletken çiftinin belli koşullarda düşük sıcaklıkla sınırlanmasının elektron iletkeni olduğu ilk kez 1956 yılında Amerikalı fizikçi Leon Cooper tarafından tanımlanmıştır. Metal bir kapta elektronlar arasında rastgele küçük bir etkileşimin Fermi enerjiden daha düşük bir enerji imkânı sağlayan ikili elektronların durumuna sebep olduğunu ve bu ikililik durumunun sınırlı olduğunu gösterdi. Konvensiyonel süper iletkenlerde, bu etkileşim elektro-fonondan kaynaklı olmasıdır. Cooper çifti için süper iletkenlik, 1979 yılında Nobel ödülü alan John Bardeen, Leon Cooper ve John Schrieffer tarafından ilerletilmiş BCS teorisinde tanımlanmıştır.

Kuantum optiği yarı klasik ve kuantum mekaniği fiziğini kullanarak ışığı içeren olayları ve onun mikroskobik seviyelerdeki maddelerle etkileşimini inceler.