İçeriğe atla

PMNS matrisi

Parçacık fiziğinde, Pontecorvo–Maki–Nakagawa–Sakata matrisi (PMNS matrisi), Maki–Nakagawa–Sakata matrisi (MNS matrisi), lepton karıştırma matrisi veya nötrino karıştırma matrisi serbestçe yayıldıkları vezayıf etkileşimlerde yer aldıları zaman, nötrinoların kuantum hallerinin yanlış eşleşmesi hakkında bilgi içeren bir birimsel [note 1] karıştırma matrisi. Nötrino salınımlarının bir modelidir. Bu matris 1962' de Ziro Maki, Masami Nakagawa ve Shoichi Sakata,[1] Bruno Pontecorvo tarafından tahin edilen nötrino salınımlarını açıklamak amacı ile sunulmuştur.[2]

Ayrıca bakınız

  • Nötrino salınımları
  • Koide formülü
  • Cabibbo–Kobayashi–Maskawa matrisi

Notlar

  1. ^ The PMNS matrix is not unitary in the seesaw model.

Kaynakça

  1. ^ Maki, Z; Nakagawa, M.; Sakata, S. (1962). "Remarks on the Unified Model of Elementary Particles". Progress of Theoretical Physics. Cilt 28. s. 870. Bibcode:1962PThPh..28..870M. doi:10.1143/PTP.28.870. 
  2. ^ Pontecorvo, B. (1957). "Inverse beta processes and nonconservation of lepton charge". Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki. Cilt 34. s. 247.  reproduced and translated in "none". Soviet Physics JETP. Cilt 7. 1958. s. 172. 

Konuyla ilgili yayınlar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kuark</span> Temel parçacık türü

Kuark, bir tür temel parçacık ve maddenin temel bileşenlerinden biridir. Kuarklar, bir araya gelerek hadronlar olarak bilinen bileşik parçacıkları oluşturur. Bunların en kararlıları, atom çekirdeğinin bileşenleri proton ve nötrondur. Renk hapsi olarak bilinen olgudan ötürü kuarklar asla yalnız bir şekilde bulunmaz, yalnızca baryonlar ve mezonlar gibi hadronlar dahilinde bulunabilir. Bu sebeple kuarklar hakkında bilinenlerin çoğu hadronların gözlenmesi sonucunda elde edilmiştir.

Takyon, ışıktan hızlı giden farazi parçacıklardır. İlk tanımı Arnold Sommerfeld'e atfedilmişse de, aslında ilk olarak George Sudarshan ve Gerald Feinberg tarafından yazılmıştır. Çoğu fizikçi için fiziğin bilinen yasaları ile tutarlı değildir, çünkü ışıktan daha hızlı parçacıkların olamayacağı tahmin edilmektedir. Takyonlar, Albert Einstein'in ünlü Genel görelilik yasasındaki v2 /c2 ifadesindeki cismin hızı (v) ışık hızından (c) büyük olursa ne olur sorusunun cevabıdırlar. Bu nedenle takyon parçacıklarının kütleleri reel sayı ile değil karmaşık sayılar ile ifade edilir aynı zamanda v daima c den büyük olacağından, takyonlar için en yavaş hız ışık hızıdır. Ancak tam olarak ışık hızında da olamazlar çünkü ışık hızında olursalar v2/c2 = 1 olacağından bu ifade tanımsız olur. Bununla birlikte, negatif kare kütle alanlar genellikle, "takyonlar" olarak adlandırılır ve aslında modern fizikte önemli bir rol oynamaya başlamıştır. Potansiyel tutarlı teoriler, ışıktan daha hızlı parçacıkların Lorentz değişmezinin kırılmasına dahil olanlara izin verir böylece özel göreceliğin altında yatan simetriye, ışığın hızı bir bariyer değildir, Böylece gerçek dünya için sınır olan ışık hızı burada da değerini korur. Buradan çıkarılacak sonuç ise, takyonların varlığının fizik ve matematik kurallarına aykırı olmadığıdır. Bunu takyonların varlığına delil olarak gösterenler vardır. Aynı (v)>(c) değerlerinin zaman denklemi içinde yerine konulması sonucunda zaman kavramının takyonlar için tıpkı kütle gibi imajiner olduğunu gösterir. Zaman gerçek olmadığı içinde zamanın oku olan entropi artışı söz konusu olmaz ve bu nedenle takyonlar evreni gerçek evrenin aksine büzüşmezler tam tersine sanal kütleleri nedeniyle çekim etkisine girmediklerinden evreni gererler. Böylece, başlanılan noktaya geri dönülen bir küresel evren modeli yerine takyon evreni için kenarları olmayan bir sonsuz evren söz konusudur. Ayrıca takyonların hızı enerjileri azaldıkça artar. Bu nedenle radyasyon yaydıkları varsayıldığında, azalan enerjileri nedeniyle sürekli hızlanırlar ve nihayet sıfır enerji için sonsuz hıza ulaşırlar. Enerji azaldıkça hızları arttığından dolayı kuvvet denilen etki hareketle aynı yönde olduğunda takyonların hızını arttırmaz tam tersine yavaşlatır. Birçok fizikçinin nötrino ve teorik takyonların özellikleri arasındaki olası bağlantıyı anlamaya çalışmış olduğuna dikkat etmek önemlidir.

Lepton, temel parçacıklardan birisidir ve maddenin yapı taşıdır. En çok bilinen lepton, atomda bulunarak atomun kimyasal özelliklerini belirleyerek neredeyse tüm kimyayı oluşturan elektrondur. İki temel lepton sınıfı vardır: yüklü leptonlar ve nötr leptonlar. Yüklü leptonlar diğer parçacıklarla birleşerek atom ya da pozitronyum gibi bileşik parçacıklar meydana getirirken nötrinolar diğer parçacıklarla etkileşime girmezler ve bu sebepten algılanmaları çok zordur.

<span class="mw-page-title-main">Nötrino</span> atom altı ya da temel parçacıklardan biri

Nötrino, ışık hızına yakın hıza sahip olan, elektriksel yükü sıfır olan ve maddelerin içinden neredeyse hiç etkileşmeden geçebilen temel parçacıklardandır. Bu özellikleri nötrinoların algılanmasını oldukça zorlaştırmaktadır. Nötrinoların çok küçük, ancak sıfır olmayan durgun kütleleri vardır. Yunan alfabesindeki ν (nü) ile gösterilir.

Parçacık fiziğinde şu anda bilinen ve kuramsal olan temel parçacıkları ve bu parçacıklarla oluşturulabilen bileşik parçacıkları içeren listedir.

<span class="mw-page-title-main">Temel parçacık</span> Başka parçacıklardan oluştuğu bilinmeyen parçacıklar.

Temel parçacıklar, bilinen hiçbir alt yapısı olmayan parçacıklardır. Bu parçacıklar evreni oluşturan maddelerin temel yapıtaşıdır. Standart Model'de kuarklar, leptonlar ve ayar bozonları temel taneciklerdir.

<span class="mw-page-title-main">Haim Harari</span> Fizikçi

Haim Harari, özellikle parçacık fiziği üzerine ve diğer alanlarda yaptığı çalışmalar ile tanınan İsrailli kuramsal fizikçidir.

<span class="mw-page-title-main">Mildred Dresselhaus</span> Amerikalı fizikçi (1930 – 2017)

Mildred Dresselhaus ya da bilinen adıyla karbon biliminin kraliçesi, Massachusetts Teknoloji Enstitüsü'nde fizik ve elektrik elektronik mühendisliği alanlarında profesördür.

Preonlar parçacık fiziğinde, kuarklar ve leptonların altparçacıkları olan nokta parçacıklardır. Terim 1974’te, Jogesh Pati ve Muhammed Abdüsselam tarafından oluşturulmuştur. Preon modellerine olan ilgi, 1980’lerde zirve noktasına ulaşmıştır ancak parçacık fiziği Standart Model'i, fiziğin kendisini en başarılı şekilde tanımlamaya devam ettiğinden ve lepton ile kuark kompozitleri hakkında hiçbir deneysel veri bulunmadığından dolayı bu ilgi azalmıştır.

Standart solar model (SSM), güneşi küresel bir gaz topu olarak ele alan matematiksel bir yaklaşımdır. Teknik olarak simetrik küresel durağanımsı bir yıldız modeli olan bu model, yıldızsal yapıyı tarif eden basit fizik prensiplerinden elde edilmiş birçok diferansiyel denkleme sahiptir. Bu model, güneşin ışıklılığı, çapı, yaşı ve bileşenleri gibi iyi bilinen sınır koşullara bağlıdır. Güneş'in yaşı direkt olarak ölçülemez. Tahmini bir değer bulmanın yollarından biri en eski meteorların yaşını bulmak ve Güneş sisteminin gelişim modellerine bakmaktır. Günümüzdeki Güneş'in fotosferinin yapısı %74,9 oranında hidrojen ve %23.8 oranında helyumdan oluşmaktadır. Astronomide metaller denilen tüm ağır elementler ise %2den daha az bir kütleye tekabül etmektedir. Standart solar model yıldızsal gelişim teorisinin doğruluğunu test etmek için kullanılmaktadır. Aslında, iki serbest parametre olan helyum mevcudiyeti ve karışma uzunluğu değerlerini bulmanın tek yolu SSMyi gözlemlenen güneşe "uygun" hale getirecek şekilde ayarlamaktır.

Büyük Birleşik Teori veya Büyük Birleşik Kuram, parçacık fiziğinde; elektromanyetik, zayıf ve kuvvetli etkileşimleri tek bir güç haline getirebilecek bir modeldir. Tanımlanan bu etkileşim daha büyük ölçüdeki bir simetri ve sonuç olarak daha fazla kuvvet taşıyıcıları ile karakterize edilir fakat ortada bir tane birleştirici sabit vardır. Eğer büyük birleşme doğada gerçekleştiyse, bu birleşmenin temel kuvvetlerin var olmadığı genç evrende olma olasılığı vardır.

Solar nötrino problemi, Dünya etrafında bulunan nötrino sayısı ve Güneş'in iç kısmının modellerine dayalı teorik hesapların arasındaki çelişkiydi. Bu çelişki 1960'ların ortalarında gözlemlendi ve 2002 civarında yeni nötrino fiziği anlayışıyla çözüldü. Bu anlayış parçacık fiziği, standart model ve özellikle nötrino salınımlarında önemli gelişmeler sağlamıştır. Temelde, nötrinoların kütlesi vardır ve türleri, güneşin içinden üretilmesi tahmin edilenden farklı bir türe dönüşebilir ve bu türler o dönemde kullanılan dedektörler tarafından tespit edilemeyebilir.

Nötrino salınımları, üretilen ve belirli bir lepton türü olan bir nötrinonun daha sonradan farklı bir tür olarak ölçülebilmesine denen bir kuantum mekaniği fenomenidir. Uzaya yayılan nötrinoların türleri periyodik olarak değişir.

Süper-Kamiokande Hida, Gifu, Japonya'da kurulmuş bir nötrino gözlemevidir. Bu gözlemevi proton bozunması, güneş ve atmosfer nötrinolarını incelemek ve Samanyolu'ndaki süpernovalara gözcülük etmek için kurulmuştur.

<span class="mw-page-title-main">Bruno Pontecorvo</span> İtalyan fizikçi

Bruno Pontecorvo, Enrico Fermi' nin ilk zamanlarındaki asistanı, yüksek enerji fiziği ve nötrinolar üzerine sayısız çalışmanın yazarı olan İtalyan nükleer fizikçi. Bir komünistin ikna etmesi sonucu, 1950'de Sovyetler Birliği'ne gitti ve burada muon çürümesi ve nötrinolar üzerine araştırmalarına devam etti. Prestijli Pontecorvo Ödülü, 1995 yılında onun anısına tesis edildi.

<span class="mw-page-title-main">J/psi mezonu</span>

J/psi mezonu veya psion bir atomaltı parçacık. Bir tane tılsım kuark ve bir de tılsım antikuarktan oluşan bir çeşni değiştiren yüksüz mezonudur. Bir tılsım kuark ve bir tılsım antikuarkın bağlı hali ile oluşan mezonlar "karmoniyum" olarak anılır. En yaygın karmoniyum, düşük değişim kütlesi, 3.0969 GeV/c23,0969 GeV/c2 yani ηc̅ ' nin (2.9836 GeV/c22,9836 GeV/c2) biraz üzerinde, sebebi ile J/psi mezondur. Bu mezon ortalama 7.2×10−21 s7,2×10-21 s ömre sahiptir.Fakat bu süre tahmin edilen 1000 kat daha uzundur.

Elektron nötrinosu, leptonların bir üyesi olan bir tür temel parçacıktır. Elektrik yükü 0 olan elektron nötrinoları, elektronlarla birlikte leptonların 1. neslini oluşturur. Wolfgang Pauli tarafından 1930'da teorileştirilmiş olup 1956'da, Clyde Cowan ve Frederick Reines'in liderliğindeki ekip tarafından gerçekleştirilen deneyle keşfedilmiştir.

<span class="mw-page-title-main">Müon nötrinosu</span>

Müon nötrinosu, bir tür lepton olan ve
ν
μ
sembolüyle gösterilen temel parçacıktır. Müon ile birlikte leptonların ikinci neslini oluşturduğundan, müon nötrinosu adını almıştır. 1940'ların başında, farklı kişiler tarafından teorileştirilmiş; 1962'de Leon Lederman, Melvin Schwartz ve Jack Steinberger tarafından Brookhaven Ulusal Laboratuvarı'nda keşfedilmiştir. Bu keşifleri sayesinde bu üç fizikçi, 1988'de verilen Nobel Fizik Ödülü'nün sahibi olmuşlardır.

Kuantum elektrodinamiğinde bir parçacığın anormal manyetik momenti, döngülerle beraber Feynman diyagramları ile ifade edilen kuantum mekaniğinin, o parçanın manyetik momentine etkilerinin bir katkısıdır.

<span class="mw-page-title-main">Yüzey plazmonu</span>

Yüzey plazmonları, yalıtkanlık sabitinin işaret değiştirdiği iki yüzey arasında uyarılabilen delokalize elektron salınımlarıdır; bunlara örnek olarak görünür ışıkta dielektrik ve metaller arası yüzeyler verilebilir. Plazmonlar plazma salınımlarının kuantasıdır; bu elektromanyetik dalgaların kuantizasyonunun fotonlar olmasıyla benzer durumdur. Yüzey plazmonları toplu plazmon salınımlarından daha az güce sahiptir; yüzey plazmonlarının aksine bu tip salınımlar Fermi gazlarında boylamasına gerçekleşir.