İçeriğe atla

Péclet sayısı

Süreklilik mekaniği alanında, Péclet sayısı (Pe, Jean Claude Eugène Péclet'ten adını almıştır), süreklilik içerisindeki taşınım fenomenlerinin araştırılmasıyla ilgili olan bir boyutsuz sayı kategorisidir. Bu sayı, bir fiziksel niceliğin akış ile gerçekleşen adveksiyon hızının, aynı niceliğin uygun bir gradyan tarafından yönlendirilen difüzyon hızına oranı olarak tanımlanır. Tür veya kütle transferi bağlamında, Péclet sayısı Reynolds sayısı ile Schmidt sayısının çarpımına eşittir (Re × Sc). Termal akışkanlar bağlamında ise, termal Péclet sayısı, Reynolds sayısı ile Prandtl sayısının çarpımına eşittir (Re × Pr).

Péclet sayısı aşağıdaki gibi tanımlanır:

Üstten görünüş: durumunda, taşınım ihmal edilebilir ve difüzyon kütle taşınımında baskın hale gelir.

Kütle transferi bağlamında, şu şekilde tanımlanır:

Üstten görünüş: durumunda, difüzyon ve adveksiyon eş zamanlarda gerçekleşir ve her iki süreç de kütle taşınımında önemli bir etkiye sahiptir.

Bu oran, sistemin karakteristik zaman aralıklarının oranı olarak da ifade edilebilir:

için difüzyon, adveksiyona kıyasla çok daha uzun sürede gerçekleşir ve dolayısıyla bu iki olgudan ikincisi kütle taşınımında baskın hale gelir.

Üstten görünüş: durumunda, difüzyon ihmal edilebilir ve adveksiyon kütle taşınımında baskın hale gelir.

Isı transferi bağlamında, Péclet sayısı şu şekilde tanımlanır:

burada L karakteristik uzunluk, u yerel akış hızı, D kütle difüzyon katsayısı, Re Reynolds sayısı, Sc Schmidt sayısı, Pr Prandtl sayısı ve α termal difüzyon katsayısıdır,

burada k termal iletkenlik, ρ yoğunluk ve cp özgül ısı kapasitesidir.

Mühendislik uygulamalarında, Péclet sayısı genellikle çok büyük değerlere ulaşır. Bu tür durumlarda, akışın aşağı akış konumlarına olan bağımlılığı azalır ve akıştaki değişkenler 'tek yönlü' özellikler kazanır. Bu nedenle, yüksek Péclet sayılarının söz konusu olduğu durumları modellemek için daha basit hesaplama modelleri kullanılabilir.[1]

Bir akış, ısı ve kütle taşınımı için genellikle farklı Péclet sayılarına sahip olur. Bu durum, çift difüzyonlu konveksiyon olgusunun ortaya çıkmasına neden olabilir.

Parçacık hareketi bağlamında, Péclet sayısına, Howard Brenner'ın onuruna sembolü Br olan Brenner sayısı da denir.[2]

Péclet sayısı, taşınım olaylarının ötesinde de kullanım alanı bulur ve mezoskopik sistemlerde rastgele dalgalanmaların ve sistematik ortalama davranışın göreli öneminin genel bir ölçüsü olarak işlev görür.[3]

Ayrıca bakınız

Kaynakça

  1. ^ Patankar, Suhas V. (1980). Numerical Heat Transfer and Fluid Flow. New York: McGraw-Hill. s. 102. ISBN 0-89116-522-3. 
  2. ^ 1977'den itibaren S. G. Mason tarafından yayınlarda teşvik edilmiş ve birçok kişi tarafından benimsenmiştir.[]
  3. ^ Gommes, Cedric; Tharakan, Joe (2020). "The Péclet number of a casino: Diffusion and convection in a gambling context". American Journal of Physics. 88 (6). s. 439. Bibcode:2020AmJPh..88..439G. doi:10.1119/10.0000957. 15 Kasım 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 29 Haziran 2024. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Reynolds sayısı</span>

Akışkanlar dinamiği alanında, Reynolds sayısı, farklı durumlarda akışkan akışı desenlerini tahmin etmeye yardımcı olan bir boyutsuz sayıdır ve eylemsizlik kuvvetleri ile viskoz kuvvetler arasındaki oranı ölçer. Düşük Reynolds sayılarında, akışlar genellikle laminer akış tarafından domine edilirken, yüksek Reynolds sayılarında akışlar genellikle türbülanslı olur. Türbülans, akışkanın hız ve yönündeki farklılıklardan kaynaklanır ve bazen bu yönler kesişebilir veya akışın genel yönüne ters hareket edebilir. Bu girdap akımları, akışı karıştırmaya başlar ve bu süreçte enerji tüketir, bu da sıvılarda kavitasyon olasılığını artırır.

<span class="mw-page-title-main">Prandtl sayısı</span>

Prandtl sayısı boyutsuz bir sayıdır. Momentum yayınımının termal yayınıma oranıdır. Sayı, Alman fizikçi Ludwig Prandtl'a ithafen adlandırılmıştır.

Manyetik Prandtl sayısı manyetohidrodinamik biliminde bir boyutsuz sayıdır. Momentum yayınımının (viskozite) manyetik yayınıma oranını gösterir. Sayı, aşağıdaki gibi tanımlanmıştır:

Darcy yasası , bir sıvının gözenekli bir ortamdan akışını tanımlayan bir denklemdir. Yasa, yer bilimlerinin bir kolu olan hidrojeolojinin temeldir. Kum yataklarından su akışı ile ilgili deneylerin sonucu.

Termodinamik ve akışkanlar mekaniği gibi bilim dallarında kullanım alanı bulan iki çeşit Bejan sayısı (Be) bulunmaktadır. Bu sayılar, Adrian Bejan'ın adını taşımaktadır.

Damköhler sayıları (Da), kimyasal reaksiyonların zaman ölçeklerini, bir sistemde gerçekleşen taşınım olaylarının hızları ile karşılaştırmak için kimya mühendisliği alanında kullanılan boyutsuz sayılardır. Bu sayılar, kimya mühendisliği, termodinamik ve akışkanlar dinamiği alanlarında çalışmalar yapmış Alman kimyager Gerhard Damköhler'in adını taşımaktadır. Karlovitz sayısı (Ka), Damköhler sayısı ile ters orantılı olarak ifade edilir ve formülü Da = 1/Ka şeklindedir.

Eckert sayısı (Ec), sürekli ortamlar mekaniğinde kullanılan bir boyutsuz niceliktir. Bir akışın kinetik enerjisi ile sınır tabaka entalpi farkı arasındaki ilişkiyi gösterir ve ısı transferinin dağılmasını karakterize etmek amacıyla kullanılır. Bu sayı, Ernst R. G. Eckert'in adını taşımaktadır.

Euler sayısı (Eu), akışkan akışı hesaplamalarında kullanılan bir boyutsuz sayıdır. Bu sayı, yerel bir basınç düşüşü ile akışın birim hacim başına kinetik enerjisi arasındaki ilişkiyi ifade eder ve akıştaki enerji kayıplarını karakterize etmek için kullanılır. Mükemmel sürtünmesiz bir akış, Euler sayısının 0 olduğu duruma karşılık gelir. Euler sayısının tersi, sembolü Ru olan Ruark Sayısı olarak adlandırılır.

Akışkanlar dinamiğinde, Graetz sayısı (Gz), bir kanaldaki laminer akışı karakterize eden bir boyutsuz sayıdır. Bu sayı şu şekilde tanımlanır:

Akışkanlar dinamiği ve termodinamik alanlarında, Lewis sayısı, termal difüzyon ile kütle difüzyonunun oranı olarak tanımlanan bir boyutsuz sayıdır. Bu sayı, eşzamanlı ısı ve kütle transferi süreçlerini karakterize etmek için kullanılır. Lewis sayısı, termal sınır tabakasının kalınlığını konsantrasyon sınır tabakası ile ilişkilendirir. Lewis sayısı şu şekilde tanımlanır:

Manyetik hidrodinamikte, manyetik Reynolds sayısı (Rm) bir boyutsuz nicelik olup, bir iletken ortamın hareketiyle bir manyetik alanın adveksiyon veya indüksiyonunun, manyetik difüzyona göreceli etkilerini tahmin eder. Bu sayı, akışkanlar mekaniğindeki Reynolds sayısının manyetik bir benzeridir ve genellikle şu şekilde tanımlanır:

Marangoni sayısı (Ma), yaygın olarak tanımlandığı üzere, Marangoni akışları ile difüzyon taşıma hızını karşılaştıran bir boyutsuz sayıdır. Marangoni etkisi, sıvının yüzey gerilimindeki gradyanlardan kaynaklanan akışıdır. Difüzyon ise yüzey gerilimindeki gradyanı oluşturan maddenin yayılmasıdır. Bu nedenle, Marangoni sayısı akış ve difüzyon zaman ölçeklerini karşılaştıran bir tür Peclet sayısıdır.

Termal akışkan dinamiği alanında, Nusselt sayısı (Nu), Wilhelm Nusselt'in adını taşıyan ve bir sınır tabakasındaki toplam ısı transferinin, kondüksiyon ısı transferine oranını ifade eden bir boyutsuz sayıdır. Toplam ısı transferi, kondüksiyon ve konveksiyonu içerir. Konveksiyon ise adveksiyon ve difüzyon bileşenlerinden oluşur. Kondüktif bileşen, konvektif koşullar altında ancak hareketsiz bir akışkan için varsayılarak ölçülür. Nusselt sayısı, akışkanın Rayleigh sayısı ile yakından ilişkilidir.

Akışkanlar mekaniğinde, Rayleigh sayısı (Ra, Lord Rayleigh'e ithafen) bir akışkan için kaldırma kuvveti ilişkili bir boyutsuz sayıdır. Bu sayı, akışkanın akış rejimini karakterize eder: belirli bir alt aralıkta bir değer laminer akışı belirtirken, daha yüksek bir aralıktaki değer türbülanslı akışı belirtir. Belirli bir kritik değerin altında, akışkan hareketi olmaz ve ısı transferi konveksiyon yerine ısı iletimi ile gerçekleşir. Çoğu mühendislik uygulaması için Rayleigh sayısı büyük olup, yaklaşık 106 ile 108 arasında bir değerdedir.

Akışkanlar dinamiğinde, bir akışkanın Schmidt sayısı, momentum difüzivitesi ile kütle difüzyonu oranı olarak tanımlanan bir boyutsuz sayıdır ve eşzamanlı momentum ve kütle difüzyonu konveksiyon süreçlerinin gerçekleştiği akışkan akışlarını karakterize etmek amacıyla kullanılır. Bu sayı, Alman mühendis Ernst Heinrich Wilhelm Schmidt (1892–1975) adına ithaf edilmiştir.

Sherwood sayısı (Sh), kütle transferi operasyonlarında kullanılan bir boyutsuz sayıdır. Bu sayı, toplam kütle transfer hızının difüzif kütle taşınım hızına oranını gösterir ve Thomas Kilgore Sherwood'un adına ithafen verilmiştir.

Stanton sayısı (St), bir akışkana aktarılan ısının akışkanın ısı kapasitesine oranını ölçen bir boyutsuz sayıdır. Stanton sayısı, Thomas Stanton (mühendis)'in (1865–1931) adına ithafen verilmiştir. Bu sayı, zorlanmış konveksiyon akışlarındaki ısı transferini karakterize etmek için kullanılır.

<span class="mw-page-title-main">Stokes sayısı</span>

Stokes sayısı (Stk), George Gabriel Stokes'un adını taşıyan ve parçacıkların bir akışkan akışı içerisinde süspansiyonda gösterdiği davranışı karakterize eden bir boyutsuz sayıdır. Stokes sayısı, bir parçacığın karakteristik zamanı ile akışın veya bir engelin karakteristik zamanı arasındaki oran olarak şu şekilde tanımlanır:

Türbülanslı Prandtl sayısı (Prt), momentum girdap difüzyonu ile ısı transferi girdap difüzyonu arasındaki oran olarak tanımlanan bir boyutsuz terimdir. Bu sayı, türbülanslı sınır tabaka akışlarındaki ısı transferi problemlerinin çözümünde oldukça önemlidir. Prt için en basit model Reynolds benzeşimi olup, türbülanslı Prandtl sayısını 1 olarak belirler. Deneysel verilere dayanarak, Prt'nin ortalama değeri 0,85 olup, sıvının Prandtl sayısı'na bağlı olarak 0,7 ile 0,9 arasında değişmektedir.

<span class="mw-page-title-main">Weber sayısı</span>

Weber sayısı (We), akışkanlar mekaniği alanında farklı iki akışkan arasındaki ara yüzeylerin bulunduğu akışkan akışlarını analiz ederken sıkça kullanılan bir boyutsuz sayıdır ve özellikle yüksek derecede eğilmiş yüzeylere sahip çok fazlı akışlar için oldukça faydalıdır. Bu sayı, Moritz Weber (1871–1951)'in adıyla anılmaktadır. Bu sayı, akışkanın eylemsizliğinin yüzey gerilimine kıyasla göreceli önemini ölçmek için kullanılan bir parametre olarak düşünülebilir. İnce film akışlarının ve damlacık ile kabarcık oluşumlarının analizinde büyük önem taşır.