Yapay zekâ ya da kısaca YZ,, insanlar da dahil olmak üzere hayvanlar tarafından, doğal zekânın aksine makineler tarafından görüntülenen zekâ çeşididir. İlk ve ikinci kategoriler arasındaki ayrım genellikle seçilen kısaltmayla ortaya çıkar. Güçlü yapay zeka genellikle Yapay genel zekâ olarak etiketlenirken, doğal zekayı taklit etme girişimleri yapay biyolojik zekâ olarak adlandırılır. Önde gelen yapay zeka ders kitapları, alanı zeki etmenlerin çalışması olarak tanımlar: Çevresini algılayan ve hedeflerine başarıyla ulaşma şansını en üst düzeye çıkaran eylemleri gerçekleştiren herhangi bir cihaz. Halk arasında, yapay zekâ kavramı genellikle insanların insan zihni ile ilişkilendirdiği öğrenme ve problem çözme gibi bilişsel eylemleri taklit eden makineleri tanımlamak için kullanılır.
Yapay sinir ağları (YSA), insan beyninin bilgi işleme tekniğinden esinlenerek geliştirilmiş bir bilgi işlem teknolojisidir. YSA ile basit biyolojik sinir sisteminin çalışma şekli taklit edilir. Yani biyolojik nöron hücrelerinin ve bu hücrelerin birbirleri ile arasında kurduğu sinaptik bağın dijital olarak modellenmesidir. Nöronlar çeşitli şekillerde birbirlerine bağlanarak ağlar oluştururlar. Bu ağlar öğrenme, hafızaya alma ve veriler arasındaki ilişkiyi ortaya çıkarma kapasitesine sahiptirler. Diğer bir ifadeyle, YSA'lar, normalde bir insanın düşünme ve gözlemlemeye yönelik doğal yeteneklerini gerektiren problemlere çözüm üretmektedir. Bir insanın, düşünme ve gözlemleme yeteneklerini gerektiren problemlere yönelik çözümler üretebilmesinin temel sebebi ise insan beyninin ve dolayısıyla insanın sahip olduğu yaşayarak veya deneyerek öğrenme yeteneğidir.
Makine öğrenimi (ML), veriden öğrenebilen ve görünmeyen verilere genelleştirebilen ve dolayısıyla açık talimatlar olmadan görevleri yerine getirebilen istatistiksel algoritmaların geliştirilmesi ve incelenmesiyle ilgilenen, yapay zekâda akademik bir disiplindir. Makine öğrenimi, bilgisayarların deneyimlerinden öğrenerek karmaşık görevleri otomatikleştirmeyi sağlayan bir yapay zeka alanıdır. Bu, veri analizi yaparak örüntüler tespit etme ve tahminlerde bulunma yeteneğine dayanır. Son zamanlarda yapay sinir ağları, performans açısından önceki birçok yaklaşımı geride bırakmayı başardı.
Gözetimli öğrenme ya da denetimli öğrenme, bilinen etiketler ve özellikler kullanarak bir fonksiyon öğrendiğimiz, makine öğreniminin önemli bir alt dalıdır. Bu yöntem, eğitim veri seti kullanılarak öğrenilen modelin, yeni ve bilinmeyen veri noktalarını doğru bir şekilde tahmin etmesini amaçlar.
Uyarlamalı ağ tabanlı bulanık çıkarım sistemi, Takagi-Sugeno bulanık çıkarım sistemine dayalı bir tür yapay sinir ağı yöntemi. Jang tarafından 1990’ların başlarında geliştirilmiş olup doğrusal olmayan fonksiyonların modellenmesinde ve kaotik zaman serilerinin tahmininde kullanılmıştır.
Derin öğrenme bir veya daha fazla gizli katman içeren yapay sinir ağları ve benzeri makine öğrenme algoritmalarını kapsayan çalışma alanıdır.
Evrişimsel sinir ağları, derin öğrenmenin bir alt dalıdır ve genellikle görsel bilginin analiz edilmesinde kullanılır. Yaygın kullanım alanları resim ve video tanıma, önerici sistemler resim sınıflandırma, tıbbi görüntü analizi ve doğal dil işleme olarak sıralanabilir.
Uzun kısa süreli bellek derin öğrenme alanında kullanılan yapay bir yinelemeli sinir ağı (RNN) mimarisidir. Standart ileri beslemeli sinir ağlarının aksine, LSTM'nin geri bildirim bağlantıları vardır. Yalnızca anlık veriyi değil, veri dizilerini de işleyebilir. Örneğin, LSTM bölümlenmemiş, bağlı el yazısı tanıma, konuşma tanıma ve ağ trafiğinde anomali veya IDS'lerde tespiti gibi görevler için geçerlidir.
Beyin hücreleri,beynin işlevsel dokusunu oluşturur. Beyin dokusunun geri kalanı, kan damarlarını içeren, stroma adı verilen yapıdır. Beyindeki iki ana hücre tipi, sinir hücreleri olarak da bilinen nöronlar ve nöroglia olarak da bilinen glial hücrelerdir.
Perceptron (Algılayıcı), tek katmanlı bir yapay sinir ağının temel birimidir. Eğitilebilecek tek bir yapay sinir hücresinden oluşmaktadır. Denetimli bir öğrenme algoritmasıdır. Bir perceptron giriş değerleri, ağırlıklar ve sapma, ağırlıklı toplam ve aktivasyon işlevi olmak üzere dört bölümden oluşmaktadır. Hem giriş hem de çıkış değerleri verilir ve sinir ağının öğrenmesi beklenir.
U-Net, Freiburg Üniversitesi Bilgisayar Bilimleri Bölümü'nde biyomedikal alanlardaki görüntü işleme çalışmalarında bölümleme yapmak için geliştirilmiş bir evrişimsel sinir ağıdır. Ağ mimarisi, tamamen evrişimli ağa dayanmaktadır ve daha az eğitim görüntüsü ile çalışmak ve daha hassas bölümlemeler sağlamak için değiştirilmiş ve genişletilmiştir. Arıca bu ağ o kadar hızlıdır ki, 512x512 piksellik bir görüntünün bölümlemesi GPU’da 1 saniyeden daha kısa sürer.
Sağlık hizmetlerinde yapay zekâ, karmaşık tıbbî ve sağlık hizmetleri verilerinin analizinde, insan bilişini taklit etmek için makine öğrenimi algoritmalarını, yazılımlarını veya yapay zekâyı (AI) tanımlamak için kullanılan kapsamlı bir terimdir. Özellikle, AI, bilgisayar algoritmalarının sonuçları yalnızca giriş verilerine göre yaklaşık olarak tahmin etme yeteneğidir.
Yapay zeka araştırmalarında sorunların, mantığın ve araştırmanın ileri düzey "sembolik" temsillerine dayanan tüm yöntemlerin toplanması için kullanılan terimdir. Sembolik YZ, 1950'lerin ortalarından 1980'lerin sonuna kadar YZ araştırmalarının baskın paradigmasıydı. 23 Mayıs 2021 tarihinde Wayback Machine sitesinde arşivlendi. 23 Mayıs 2021 tarihinde Wayback Machine sitesinde arşivlendi.
Çekişmeli üretici ağ, Ian Goodfellow ve meslektaşları tarafından 2014 yılında tasarlanan bir makine öğrenimi framework sınıfıdır. Bir oyunda iki sinir ağı birbiriyle yarışmaktadır.
Veri analizinde, anomali tespiti, verilerin çoğunluğundan önemli ölçüde farklılaşarak şüphe uyandıran nadir öğelerin, olayların veya gözlemlerin tanımlanmasıdır. Tipik olarak anormal öğeler, banka dolandırıcılığı, yapısal bir kusur, tıbbi sorunlar veya bir metindeki hatalar gibi bir tür soruna dönüşecektir. Anormallikler ayrıca aykırı değerler, yenilikler, gürültü, sapmalar ve istisnalar olarak da adlandırılmaktadır.
Adaptif rezonans teorisi (ART), Stephen Grossberg ve Gail Carpenter tarafından beynin bilgiyi nasıl işlediğini anlamak üzere geliştirilen bir teoridir. Denetimli ve denetimsiz öğrenme yöntemlerini kullanan ve örüntü tanıma ve tahmin gibi sorunları ele alan bir dizi sinir ağı modelini açıklamaktadır.
Yinelemeli sinir ağı, düğümler arası bağların zamansal bir dizi doğrultusunda yönlü çizge oluşturduğu bir yapay sinir ağı çeşididir. Yaygın olarak İngilizce kısaltması olan RNN olarak anılır. İleri beslemeli sinir ağından türetilen RNN yöntemi, bir iç durum belleği kullanarak değişik uzunluktaki dizileri işleyebilir. Bu sayede yazı tanıma ve konuşma tanıma gibi problemlere uygulanabilir. Teorik olarak Turing makinesine denk (Turing-complete) olan yinelemeli sinir ağları, herhangi uzunluktaki bir girdiyi işleyebilen herhangi bir programı çalıştırabilir.
Metinden görüntüye model, girdi olarak bir metin açıklamasını alan ve bu tanıma uyan bir görüntü üreten bir makine öğrenim modelidir. Bu tür modeller, derin sinir ağlarındaki geliştirmelerin bir sonucu olarak 2010'ların ortalarında geliştirilmeye başlandı. 2022'de OpenAI'dan DALL-E 2, Google Brain'den Imagen ve StabilityAI'den Stable Diffusion gibi metinden resme modellerin çıktıları, gerçek fotoğrafların ve insan çizimlerinin kalitesine yaklaşmaya başladı.
Nöral makine çevirisi (NMT), bir sözcük dizilim olasılığını tahmin etmek için yapay bir sinir ağı kullanan ve genellikle cümlenin tümünü tek bir entegre modelde modelleyen bir makine çevirisi yaklaşımıdır.
Yapay sinir ağındaki bir nöronun aktivasyon fonksiyonu, nöronun girdilerinden gelen değerlerin toplamını kullanarak nöronun çıktısını hesaplamaya yardımcı olan matematiksel fonksiyondur. Aktivasyon fonksiyonu doğrusal olmadığı sürece, sadece birkaç nöron kullanılarak bile karmaşık problemler çözülebilir.