İçeriğe atla

Ortak olasılık

Ortak olasılık veya birleşik olasılık kavramı, iki A ve B olayının birlikte gerçekleşme olasılığını ifade eder. veya P(A,B) ile gösterilir.

Bağımsız olaylar

Söz konusu A ve B olayları birbirlerinden bağımsız iseler, ortak olasılıkları basit bir çarpım halini alır:

Bağımlı olaylar

Söz konusu A ve B olayları birbirlerinden bağımsız değilseler, ortak olasılıkları koşullu olasılıkları yardımıyla elde edilebilir:

ve

Birbirini dışlayan olaylar

Söz konusu A ve B olaylarının biri, diğeri gerçekleştiği takdirde gerçekleşemiyor ise, birinin diğerini dışladığından söz edilir ve bu durumda ortak olasılıkları sıfırlanır:

Ayrıca bakınız

İlgili Araştırma Makaleleri

Hipotez testi, bir hipotezin doğruluğunun istatistiksel bir güvenilirlik aralığında saptanması için kullanılan yöntem.

Koşullu olasılık kavramı, bir olayın gerçekleşme olasılığının hesaplanmasında ek bilginin kullanılmasına olanak tanır. Örneğin bir kişinin iki çocuğu olduğunu düşünürsek, her ikisinin de kız olma olasılığı 1/4 olur. Ancak birinin kız olduğunu önceden bilirsek, bu olasılık 1/3 olarak değişir. Ama herhangi biri değil de birincisi kız olduğu biliniyorsa olasılık 1/2 olur. Yani bu iki durumda, her iki çocuğun da kız olma olasılığı, birinin kız olması koşullu olarak hesaplanır.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

<span class="mw-page-title-main">Poisson dağılımı</span>

Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

Olasılık kuramı içinde, toplam olasılık yasası şöyle ifade edilir:

A için önsel (marjinal) olasılık, A' nın sonsal (koşullu) olasılığının beklenen değerine eşittir

Bayes teoremi, olasılık kuramı içinde incelenen önemli bir konudur. Bu teorem bir rassal değişken için olasılık dağılımı içinde koşullu olasılıklar ile marjinal olasılıklar arasındaki ilişkiyi gösterir. Bu şekli ile Bayes teoremi bütün istatistikçiler için kabul edilir bir ilişkiyi açıklar. Bu kavram için Bayes kuralı veya Bayes savı veya Bayes kanunu adları da kullanılır.

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

Olasılık teorisinde Kolmogorov aksiyomları, temel üç aksiyomdur. Belirli bir E olayı için P olasılığı varken matematik notasyonla olarak ifade edilirken Kolmogorov aksiyomlarını tatmin etmesi temeline bağlanmıştır. Bu aksiyomlar, ilk defa 20. yüzyılda Rus istatistikçisi Andrey Kolmogorov tarafından ortaya atılmıştır.

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

Koşullu beklenti, koşullu beklenen değer veya koşullu ortalama, olasılık kuramı bilim dalında bir reel değerli rassal değişken için bir koşullu olasılık dağılımı na göre matematiksel beklentidir.

Olasılık kuramında iki olayın bağımsız olması bu olaylardan birinin gerçekleşme olasılığının diğer olayın gerçekleşip gerçekleşmediğine bağlı olmaması anlamına gelmektedir. Örneğin;

Pearson ki-kare testi nicel veya nitel değişkenler arasında bağımlılık olup olmadığının, örnek sonuçlarının belirli bir teorik olasılık dağılımına uygun olup olmadığının, iki veya daha fazla örneğin aynı anakütleden gelip gelmediğinin, ikiden fazla anakütle oranının birbirine eşit olup olmadığının ve çeşitli anakütle oranlarının belirli değere eşit olup olmadığının araştırılmasında kullanılır. İstatistik biliminin çıkarımsal istatistik bölümünde ele alınan iki-değişirli parametrik olmayan test analizlerinden olan ve ki-kare dağılımı'nı esas olarak kullanan ki-kare testlerinden en çok kullanılanıdır. İngiliz istatistikçi olan Karl Pearson tarafından 1900'da ortaya çıkartılmıştır.

<span class="mw-page-title-main">Naive Bayes sınıflandırıcısı</span>

Naïve Bayes sınıflandırıcı, örüntü tanıma problemine ilk bakışta oldukça kısıtlayıcı görülen bir önerme ile kullanılabilen olasılıksal bir yaklaşımdır. Bu önerme, örüntü tanımada kullanılacak her bir tanımlayıcı öznitelik ya da parametrenin istatistik açıdan bağımsız olması gerekliliğidir. Her ne kadar bu önerme Naive Bayes sınıflandırıcının kullanım alanını kısıtlasa da istatistik bağımsızlık koşulu esnetilerek kullanıldığında da daha karmaşık yapay sinir ağları gibi metotlarla karşılaştırabilir sonuçlar vermektedir. Bir Naive Bayes sınıflandırıcı, her özniteliğin birbirinden koşulsal bağımsız olduğu ve öğrenilmek istenen kavramın tüm bu özniteliklere koşulsal bağlı olduğu bir Bayes ağı olarak da düşünülebilir.

<span class="mw-page-title-main">Bayesci istatistik</span>

Bayesci istatistik, Bayesyen istatistik veya Bayesgil istatistik, olasılığın bir olaya olan inancın bir derecesini ifade ettiği Bayesci olasılık yorumuna dayanan istatistik alanındaki bir teoridir. İnanç derecesi, önceki deneylerin sonuçları gibi olay hakkında önceki bilgilere veya olayla ilgili kişisel inançlara dayanabilir. Bu, olasılığı birçok denemeden sonra bir olayın göreceli sıklığının sınırı olarak gören sıklıkçı olasılık yorumlaması gibi bir dizi başka olasılık yorumundan farklıdır.

Olasılık teorisinde, zincir kuralı, yalnızca koşullu olasılıkları kullanarak bir rassal değişkenler kümesinin ortak dağılımının herhangi bir üyesinin hesaplanmasına izin verir. Kural, koşullu olasılıklar açısından bir olasılık dağılımını tanımlayan Bayes ağları çalışmasında kullanışlıdır.

<span class="mw-page-title-main">Ortak olasılık dağılımı</span>

Ortak olasılık dağılımı ya da birleşik olasılık dağılımı, sayıları birden fazla olan rassal değişkenlerinin birlikte gerçekleşmelerinin olasılık dağılımıdır.