Radyoaktivite, radyoaktiflik, ışınetkinlik veya nükleer bozunma; atom çekirdeğinin, daha küçük çekirdekler veya elektromanyetik ışımalar yayarak kendiliğinden parçalanmasıdır. Çekirdek tepkimesi sırasında veya çekirdeğin bozunması ile ortaya çıkar. En yaygın ışımalar alfa(α), beta(β) ve gamma(γ) ışımalarıdır. Bir maddenin radyoaktivitesi bekerel veya curie ile ölçülür.
Fizik mühendisliğinin konusu, doğadaki maddelerin yapısını ve aralarındaki etkileşimi inceleyen fizik bilimi bulgularının uygulama alanına dönüştürülmesi ile ilgilidir.
Nötron, sembolü n veya n⁰ olan, bir atomaltı ve nötr bir parçacıktır. Proton ile birlikte, atomun çekirdeğini meydana getirir. Bir yukarı ve iki aşağı kuark ve bunların arasındaki güçlü etkileşim sayesinde oluşur. Proton ve nötron yaklaşık olarak aynı kütleye sahiptir fakat nötron daha fazla kütleye sahiptir. Nötron ve protonun her ikisi nükleon olarak isimlendirilir. Nükleonların etkileşimleri ve özellikleri nükleer fizik tarafından açıklanır. Nötr hidrojen atomu dışında bütün atomların çekirdeklerinde nötron bulunur. Her atom farklı sayıda nötron bulundurabilir. Proton ve nötronlar, kuarklardan oluştukları için temel parçacık değildirler.
Muhammed Abdüsselam, elektrozayıf etkileşim ile ilgili çalışmalara katkılarından dolayı 1979 yılında Nobel Fizik Ödülünü paylaşan kuramsal fizikçidir. Abdüsselam Nobel Ödülü kazanan ilk Pakistanlı ve Mısırlı Enver Sedat'tan sonra Nobel Ödülü kazanan ilk Müslüman olmakla birlikte fen alanında bu ödülü kazanan ilk Müslüman olarak tanındı.
Parçacık hızlandırıcı, yüklü parçacıkları yüksek hızlara çıkarmak ve demet halinde bir arada tutmak için elektromanyetik alanları kullanan araçların genel adıdır. Büyük hızlandırıcılar parçacık fiziğinde çarpıştırıcılar olarak bilinirler. Diğer tip parçacık hızlandırıcılar, kanser hastalıklarında parçacık tedavisi, yoğun madde fiziği çalışmalarında senkrotron ışık kaynağı olmaları gibi birçok farklı uygulamalarda kullanılır. Şu an dünya çapında faaliyette olan 30.000'den fazla hızlandırıcı bulunmaktadır.
Antimadde, karşı madde veya karşıt madde, maddenin ters ikizi. Paul Dirac denklemiyle ortaya çıkarılmış ve daha sonraki gözlemlerle de varlığı doğrulanmıştır. Antimadde en basit hâliyle normal maddenin zıddıdır. Antimaddenin atomaltı parçacıkları, normal maddeye göre zıt özellikler taşımaktadır. Bu atomaltı parçacıkların elektrik yükleri, normal maddenin atomaltı parçacıklarının tam tersidir. Antimadde, Büyük Patlama'dan sonra normal maddeyle birlikte oluşmuştur; fakat sebebinin ne olduğunu bilim insanları tam anlamıyla bilemeseler de evrende oldukça nadir bulunmaktadır.
Atom çekirdeği, atomun merkezinde yer alan, proton ve nötronlardan oluşan küçük ve yoğun bir bölgedir. Atom çekirdeği 1911 yılında Ernest Rutherford tarafından keşfedildi. Bu keşif, 1909 yılında gerçekleştirilen Geiger-Marsden deneyine dayanmaktadır. Nötronun James Chadwick aracılığıyla 1932 yılında keşfinden sonra, çekirdeğin proton ve nötronlardan oluştuğu modeli Dmitri Ivanenko ve Werner Heisenberg tarafından çabucak geliştirildi. Atomun kütlesinin neredeyse tamamı çekirdek içerisindedir, elektron bulutunun atom kütlesine katkısı oldukça azdır. Proton ve nötronlar çekirdek kuvveti tarafından çekirdeği oluşturmak için birbirlerine bağlanmıştır.
Alfa parçacığı (alfa, Yunan alfabesindeki ilk harf ile gösterilir, α) parçacık ışınları arasında yüksek derecede iyonlaştırıcı bir ışın formudur. İki proton ve iki nötronun helyum çekirdeğindekine benzer bağları sebebiyle He2+ olarak da gösterilir. Alfa parçacığının kütlesi 6.644656×10−27 kg olup, 3.72738 GeV enerjiye denktir.
Ernest Orlando Lawrence,, 1939 yılında icadı siklotron ile Nobel Fizik Ödülü kazanmış olan, Amerikalı nükleer fizikçi. Manhattan Projesi için yaptığı uranyum izotop ayırma üzerindeki çalışması, Lawrence Berkeley Ulusal Laboratuvarı ve Lawrence Livermore Ulusal Laboratuvarı kuruluşundaki katkıları ile tanınmaktadır.
Şablon:Tarih=Mart 2024
Walther Wilhelm Georg Bothe, 1954'te Max Born ile Nobel Fizik Ödülü'nü paylaşan bir Alman nükleer fizikçiydi.
Siklotron bir çeşit parçacık hızlandırıcıdır. Siklotronlar yüklü parçacıkları yüksek frekanslı alternatif gerilim kullanarak hızlandırır.
Nükleer fizik veya çekirdek fiziği, atom çekirdeklerinin etkileşimlerini ve parçalarını inceleyen bir fizik alanıdır. Nükleer enerji üretimi ve nükleer silah teknolojisi nükleer fiziğin en çok bilinen uygulamalarıdır fakat nükleer tıp, manyetik rezonans görüntüleme, malzeme mühendisliğinde iyon implantasyonu, jeoloji ve arkeolojide radyo karbon tarihleme gibi birçok araştırma da nükleer fiziğin uygulama alanıdır.
Madde ya da özdek, uzayda yer kaplayan hacmi ve kütlesi olan tanecikli yapılara denir. Beş duyu organımızla algılayabildiğimiz (hissedebildiğimiz)ve eylemsizliği olan canlı ve cansız varlıklara denir.
En basit çekirdek olan hidrojen çekirdeği hariç bütün çekirdeklerde nötron ve proton bulunur. Nötronların protonlara oranı hafif izotoplarda birebir oranındayken periyodik tablonun sonundaki ağır elementlere doğru bu oran gittikçe artmaktadır. Bu oran daha da artarak nüklitin artık kararlı olmadığı bir noktaya gelir. Daha ağır nüklitler, dışarıya verecekleri fazla enerjileri olduğundan kararsızlardır. Bunlara radyonüklit denir. Bu süreçte radyonüklid radyoaktif bozunmaya uğrar ve bu esnada gama ışını ve/veya atom altı parçacıklar yayabilir. Bu parçacıklar iyonlaştırıcı radyasyonu oluştur. Radyonüklidler doğada bulunabildikleri gibi yapay yollarla da üretilebilirler.
Edwin McMillan Nobel Kimya ödülü sahibi Amerikalı nükleer fizikçi. 93. element neptünyum'u keşfinden dolayı Glenn T. Seaborg ile birlikte 1951 yılında Nobel ödülü ile onurlandırılmıştır.
Paul Scherrer Institute (PSI) ETH Zürih ve EPFL'yi de kapsayan İsviçre ETH-Komplex'e ait çok disiplinli bir araştırma enstitüsüdür. 1960'ta kurulan EIR ve 1968'de kurulan SIN birleştirilmesi ile 1988 yılında kurulmuştur.
Nükleer bağlanma enerjisi, atomun çekirdeğini bileşenlerine ayırmak için gereken enerjidir. Bu bileşenler nötron, proton ve nükleondur. Bağ enerjisi genelde pozitif işaretlidir çünkü çoğu çekirdek parçalara ayrılmak için net bir enerjiye ihtiyacı vardır. Bu yüzden, genelde bir atomun çekirdeğinin kütlesi ayrı ayrı ölçüldüğünde daha azdır. Bu fark nükleer bağlanma enerjisidir ki bu enerji birbirini tutan bileşenlerin uyguladığı kuvvet tarafından sağlanır. Çekirdeği bileşenlerine ayırırken, kütlenin bir kısmı büyük bir enerjiye dönüştürülür bu yüzden bir kısım kütle eksilir, eksik kütlede bir fark yaratır çekirdekte. Bu eksik kütle, kütle eksiği diye bilinir ve çekirdek oluşurken çıkan enerjiye takabül eder.
Sör Marcus ‘’Mark’’ Laurence Elwin Oliphant Avustralyalı fizikçi ve hümanist. Nükleer füzyonun ilk deneysel gösterimlerinde ve nükleer silahların geliştirilmesinde büyük rol oynamıştır. Güney Avustralya'da Adelaide’de doğmuştur. Oliphant 1922 yılında Adelaide Üniversitesi’nden mezun olmuştur. 1927 yılında 1851 Sergileme Ödülü’nü, cıva üzerinde yaptığı dayanım deneyleri sayesinde kazandı ve İngiltere Cambridge Üniversitesi Cavedish Laboratuvarı'nda Sör Ernest Rutheford’un öğrencisi olarak çalışmaya gitti. Cavendish Laboratuvarı'nda parçacık hızlandırıcısını kullanarak, ağır hidrojen çekirdeğini çeşitli hedeflere ateşlemiştir. Helyum-3 ve trityum çekirdeğini keşfetmiştir. Ayrıca bu iki çekirdeğin reaksiyonu sonucunda, parçacıkların başlangıç enerjilerinden daha fazla enerji açığa çıkardığını keşfetmiştir. Enerji çekirdeğin içinden ayrı değerlendirilmiştir ve Oliphant bunun nükleer füzyonun bir sonucu olduğunu anlamıştır.
Artem Isahaki Alikhanyan Sovyet asıllı fizikçi. Yerevan Fizik Enstitüsü'nün ilk kurucularından ve ilk müdürüdür. Ermenistan Bilim Akademisi'nde akademisyen ve SSCB Bilimler Akademisi üyesi olmuştur. Pyotr Kapitsa, Lev Landau, Igor Kurçatov, Abram Alihanov ve diğer bilim adamlarıyla birlikte Sovyetler Birliği'nde nükleer fiziğin temelini atmıştır ve Ermeni fiziğinin babası olarak da bilinir.