İçeriğe atla

Optik cımbız

Optik cımbız ya da diğer adıyla tek ışınlı eğim kuvveti kapanı, parçacık ve parçacığı çevreleyen ortamın göreli kırılma indisine göre parçacıklara, lazer ışınları kullanarak pikoNewton ölçeğinde çekme ya da itme kuvveti oluşturan bilimsel alettir. Mikro parçacıklardaki saçılma ve eğim kuvvetlerinin tespit edilmesi ilk olarak 1970'te, Arthur Ashkin tarafından gerçekleştirildi.[1] Optik cımbızın keşfi ise Ashkin ve ekibi tarafından 1986 yılında duyuruldu.[2] Bu icadından dolayı Ashkin'e, 2018, yılında Nobel Fizik Ödülü verildi.[3]

Kaynakça

  1. ^ Ashkin, Arthut (1970). "Acceleration and Trapping of Particles by Radiation Pressure". Physical Review Letters (İngilizce). 24 (4). ss. 156-159. Bibcode:1970PhRvL..24..156A. doi:10.1103/PhysRevLett.24.156. 
  2. ^ Ashkin, Arthur; A, Dziedzic; JM, Bjorkholm; JE, Chu S (1986). "Observation of a single-beam gradient force optical trap for dielectric particles". Optics Letters (İngilizce). 11 (5). ss. 288-290. Bibcode:1986OptL...11..288A. CiteSeerX 10.1.1.205.4729 $2. doi:10.1364/OL.11.000288. 
  3. ^ "The Nobel Prize in Physics 2018" (İngilizce). Nobel Vakfı. 9 Şubat 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 11 Nisan 2019. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektron</span> Temel elektrik yüküne sahip atomaltı parçacık

Elektron, eksi bir temel elektrik yüküne sahip bir atomaltı parçacıktır. Lepton parçacık ailesinin ilk nesline aittir ve bileşenleri ya da bilinen bir alt yapıları olmadığından genellikle temel parçacıklar olarak düşünülürler. Kütleleri, protonların yaklaşık olarak 1/1836'sı kadardır. Kuantum mekaniği özellikleri arasında, indirgenmiş Planck sabiti (ħ) biriminde ifade edilen, yarım tam sayı değerinde içsel bir açısal momentum (spin) vardır. Fermiyon olmasından ötürü, Pauli dışarlama ilkesi gereğince iki elektron aynı kuantum durumunda bulunamaz. Temel parçacıkların tamamı gibi hem parçacık hem dalga özelliklerini gösterir ve bu sayede diğer parçacıklarla çarpışabilir ya da kırınabilirler.

<span class="mw-page-title-main">Kuark</span> Temel parçacık türü

Kuark, bir tür temel parçacık ve maddenin temel bileşenlerinden biridir. Kuarklar, bir araya gelerek hadronlar olarak bilinen bileşik parçacıkları oluşturur. Bunların en kararlıları, atom çekirdeğinin bileşenleri proton ve nötrondur. Renk hapsi olarak bilinen olgudan ötürü kuarklar asla yalnız bir şekilde bulunmaz, yalnızca baryonlar ve mezonlar gibi hadronlar dahilinde bulunabilir. Bu sebeple kuarklar hakkında bilinenlerin çoğu hadronların gözlenmesi sonucunda elde edilmiştir.

Yukarı kuark en hafif kuarktır, temel bir parçacıktır ve maddenin önemli bir bileşenidir. Aşağı kuarkla birlikte atom çekirdeğini meydana getiren proton ve nötronu oluşturur. Birinci nesil olarak sınıflandırılırlar. Elektrik yükü +2/3 e olup çıplak kütleleri 2,2+0,5
-0,4
 MeV/c2
olarak ölçülmüştür. Bütün kuarklar gibi yukarı kuark da 1/2 spine sahip temel fermiyondur ve dört temel etkileşimin hepsinden etkilenir. Yukarı kuarkın antiparçacığı olan yukarı antikuark ile elektriksel yük işareti gibi birkaç özellikte farklılaşır.

<span class="mw-page-title-main">David Lee (fizikçi)</span> Amerikalı fizikçi

David Lee Morris "helyum-3 süperakışkanlık buluşları için" Robert C. Richardson ve Douglas Osheroff ile Fizik 1996 Nobel Ödülü'nü kazanan Amerikalı fizikçi.

Preonlar parçacık fiziğinde, kuarklar ve leptonların altparçacıkları olan nokta parçacıklardır. Terim 1974’te, Jogesh Pati ve Muhammed Abdüsselam tarafından oluşturulmuştur. Preon modellerine olan ilgi, 1980’lerde zirve noktasına ulaşmıştır ancak parçacık fiziği Standart Model'i, fiziğin kendisini en başarılı şekilde tanımlamaya devam ettiğinden ve lepton ile kuark kompozitleri hakkında hiçbir deneysel veri bulunmadığından dolayı bu ilgi azalmıştır.

<span class="mw-page-title-main">Pentakuark</span>

Pentakuark, birbirlerine bağlı durumdaki dört kuark ile bir antikuarktan oluşan atomaltı parçacıktır. Kuarkların +1/3, antikuarkların ise - 1/3 baryon sayısına sahip olmalarından ötürü pentakuarkların toplam baryon sayısı 1'dir ve bu da pentakuarkların baryon olarak tanımlanmasını sağlar. Normal baryonların aksine üç değil de beş kuark bulundurmasından ötürü egzotik baryon olarak sınıflandırılır.

Parton, Richard Feynman tarafından ortaya atılan bir hadron modelidir. Stanford Doğrusal Hızlandırıcı Merkezi'nde (SLAC) 1968 yılında yapılan derin inelastik saçılma deneyleri, protonun daha küçük, nokta benzeri parçacıklardan oluştuğunu ve böylece bir temel parçacık olmadığını gösterdi. O dönemde fizikçiler bu nesneleri kuarklar ile ilişkilendirmek konusunda tereddütlü olduklarından parçacıklar, Feynman tarafından türetilen "parton" olarak adlandırdı. Bu deneyler sırasında gözlemlenen cisimler, diğer çeşnilerin de keşfedilmesiyle daha sonra yukarı ve aşağı kuark olarak tanımlanacaktı. Buna rağmen parton, hadronların bileşenlerini tanımlayan ortak bir terim olarak kullanımda kaldı.

<span class="mw-page-title-main">J/psi mezonu</span>

J/psi mezonu veya psion bir atomaltı parçacık. Bir tane tılsım kuark ve bir de tılsım antikuarktan oluşan bir çeşni değiştiren yüksüz mezonudur. Bir tılsım kuark ve bir tılsım antikuarkın bağlı hali ile oluşan mezonlar "karmoniyum" olarak anılır. En yaygın karmoniyum, düşük değişim kütlesi, 3.0969 GeV/c23,0969 GeV/c2 yani ηc̅ ' nin (2.9836 GeV/c22,9836 GeV/c2) biraz üzerinde, sebebi ile J/psi mezondur. Bu mezon ortalama 7.2×10−21 s7,2×10-21 s ömre sahiptir.Fakat bu süre tahmin edilen 1000 kat daha uzundur.

Parçacık fiziğinde asimptotik özgürlük, enerji ölçeği yükseldikçe ve ilgili uzunluk ölçeği azaldıkça iki parçacık arası bağın asimptotik olarak zayıf olmasına sebebiyet veren ayar teorilerinin özelliklerinden biridir.

Ksi baryonları, birinci çeşni nesillerinden bir kuarka, daha yüksek çeşnili nesillerinden ise iki kuarka sahip, Ξ sembolüyle gösterilen hadron parçacığı ailesidir. Bu nedenlerden ötürü bu tip parçacıklar birer baryondur, toplam izospinleri 1/2'dir ve nötr olabildikleri gibi +2, +1 ya da -1 temel yüke sahip olabilirler. Yüklü Ksi baryonları ilk kez 1952'de, Manchester grubu tarafından gerçekleştirilen kozmik ışın deneyleri sırasında gözlemlenmiştir. Nötr Ksi baryonlarının ilk kez gözlemlenmesi ise 1959'da, Lawrence Berkeley Ulusal Laboratuvarı'nda gerçekleştirildi. Kararsız durumları, bozunma zinciri sonucunda daha hafif parçacıklara bozunmaları sebebiyle geçmişte çağlayan parçacıklar olarak da anılmaktaydılar.

Omega baryonları, birinci çeşni nesillerinden (yukarı ve aşağı kuarklar) herhangi birini içermeyen, daha yüksek çeşnili nesillerinden (garip, tılsım ve alt kuarklar) üç kuarka sahip, Ω sembolüyle gösterilen hadron parçacığı ailesidir. Hadronlaşma için gereken güçlü etkileşim süresinin altında (5×10-25 s) ortalama yaşam süresine sahip olmaları nedeniyle üst kuark içeren bir omega baryonu gözlemlenmemiş ve gözlemlenmesi de beklenmemektedir. Bu nedenlerden ötürü bu tip parçacıklar birer baryondur, toplam izospinleri 0'dır ve nötr olabildikleri gibi +1 temel yüke sahip olabilirler. Üç garip kuarktan oluşan
Ω-
, 1964 yılında gözlemlenmiştir ve keşfedilen ilk omega baryonudur.

<span class="mw-page-title-main">Arthur Ashkin</span> Amerikalı fizikçi (1922 – 2020)

Arthur Ashkin, Amerikalı fizikçidir. 2018'de, "lazer fiziği alanında yaptığı devrimsel icatları", özellikle de "optik cımbızı icat etmesi ve bunu biyolojik sistemlere uyarlaması" gerekçesiyle Nobel Fizik Ödülü kazanmıştır.

<span class="mw-page-title-main">Gérard Mourou</span> Fransız fizikçi (d. 1944)

Gérard Albert Mourou, Fransız fizikçi ve akademistendir. Elektrik mühendisliği ve lazerler üzerine çalışmalarda bulunmaktadır. 2018 yılında Nobel Fizik Ödülü kazanmıştır.

<span class="mw-page-title-main">Müon nötrinosu</span>

Müon nötrinosu, bir tür lepton olan ve
ν
μ
sembolüyle gösterilen temel parçacıktır. Müon ile birlikte leptonların ikinci neslini oluşturduğundan, müon nötrinosu adını almıştır. 1940'ların başında, farklı kişiler tarafından teorileştirilmiş; 1962'de Leon Lederman, Melvin Schwartz ve Jack Steinberger tarafından Brookhaven Ulusal Laboratuvarı'nda keşfedilmiştir. Bu keşifleri sayesinde bu üç fizikçi, 1988'de verilen Nobel Fizik Ödülü'nün sahibi olmuşlardır.

Elektron optiği, elektronların elektromanyetik alanlarda izledikleri yörüngelerin hesaplanmasında kullanılan matematiksel yapıdır. Elektron optiği hesaplamaları, elektron mikroskopları ve parçacık hızlandırıcılarda kullanılmaktadır.

Orbiton, holonlar ve spinonlar ile birlikte, katıların içindeki elektronların spin-yük ayrımı sırasında bölünerek oluşturduğu ve mutlak sıfıra yakın sıcaklıklarda hapsedilen sanki parçacıktır. Elektron, teorik olarak her zaman bu üç sanki parçacığın bir bağlı durumu olarak kabul edilmektedir. Bunlardan orbitron, elektronun yörüngesel konumunu taşımaktadır. Belli şartlar altında ise hapis durumlarından kurtularak bağımsız parçacıklar olarak davranabilmektedirler.

Geiger-Marsden deneyleri, bilim insanlarının her atomun tüm pozitif yükünün ve kütlesinin çoğunun yoğunlaştığı bir çekirdeğe sahip olduğunu keşfettikleri önemli bir deney serisidir. Bu sonucu, ince bir metal folyoya çarptığında bir alfa parçacık ışınının nasıl dağıldığını ölçerek çıkardılar. Deneyler, 1908-1913 arasında Hans Geiger ve Ernest Marsden tarafından Manchester Üniversitesi Fizik Laboratuvarlarında Ernest Rutherford başkanlığında yapıldı.

Parçacık sağanağı, yüksek enerjili bir parçacığın, yoğun bir maddeyle etkileşime girmesi sonucu oluşan ikincil parçacıkların saçılmasıdır. Bu parçacıklar etkileşime girerek daha az enerjili yeni parçacıkları oluştururken, bu oluşanlar da etkileşime girerler ve bu olay, milyarlarca defaya kadar tekrarlanabilir. Bir noktada bu olay durur ve bu parçacıklar madde tarafından soğrulur.

<span class="mw-page-title-main">Gregory Winter</span> Nobel ödüllü İngiliz biyokimyacı

Sir Gregory Paul Winter Nobel Ödülü sahibi, İngiliz biyokimyagerdir. En bilinen çalışması monoklonal antikorların tedavide kullanımı üzerinedir.

X17 parçacığı, bazı anormal ölçüm sonuçlarını açıklamak için Attila Krasznahorkay ve çalışma arkadaşları tarafından öne sürülen varsayımsal bir atom altı parçacıktır. Bu parçacık, berilyum-8 atom çekirdeklerinin geçirdiği bir nükleer bozunma sırasında üretilen parçacıkların ve kararlı helyum atomlarının bozunumunda üretilen parçacıkların hareket doğrultularında gözlemlenen geniş açıları açıklamak için öne sürülmüştür. X17 parçacığı, karanlık madde ile muhtemelen bir bağlantısı olan varsayımsal beşinci bir kuvvetin kuvvet taşıyıcısı olabilir. Parçacığın protofobik ve kütlesi yaklaşık 17 MeV olan bir vektör bozonu olduğu düşünülmektedir.