İçeriğe atla

OptiSLang

optiSLang
Geliştirici(ler)Dynardo GmbH
Güncel sürüm7.4.0[1]
İşletim sistemiÇapraz platform
PlatformIntel x86 32-bit, x86-64
Erişilebilirlikİngilizce
TürSimülasyon yazılımı
LisansÖzel mülk yazılım
Resmî sitesioptiSLang web sayfası

optiSLang, CAE (Computer-aided engineering) tabanlı duyarlılık analizi, çok disiplinli optimizasyon (MDO - multi-disciplinary optimization) ve sağlamlık değerlendirmesi için bir yazılım platformudur. Dynardo GmbH tarafından geliştirilmiştir ve önceden tanımlanmış bir optimizasyon hedefine en çok katkıda bulunan değişkenleri belirleyerek sayısal Robust Design Optimization (RDO) ve stokastik analiz için bir çerçeve sağlar. Bu aynı zamanda sağlamlığın değerlendirilmesini, yani tasarım değişkenlerinin dağılımına veya parametrelerin rastgele dalgalanmalarına karşı duyarlılığı da içerir.[2] 2019 yılında Dynardo GmbH, Ansys tarafından satın alındı.[3]

Metodoloji

Duyarlılık analizi

Sürekli optimizasyon değişkenlerini değişken etkileşimleri olmadan tekdüze dağılımlarla temsil eden varyans tabanlı hassasiyet analizi, model yanıtlarının olası bir iyileştirmesi için optimizasyon değişkenlerinin katkısını ölçer. Yerel türev tabanlı duyarlılık yöntemlerinin aksine, varyans tabanlı yaklaşım, tanımlanan değişken aralıklarına göre katkıyı ölçer.

Coefficient of Prognosis (CoP):[4]

CoP, model kalitesini değerlendirmek için modelden bağımsız bir ölçüdür ve aşağıdaki gibi tanımlanır:

Burada karesel tahmin hatalarının toplamıdır. Bu hatalar çapraz doğrulama temelinde tahmin edilir. Çapraz doğrulama prosedüründe, destek noktaları kümesi alt kümelerine eşlenir. Ardından, destek noktalarından alt kümesi çıkarılarak ve kalan nokta kümesi kullanılarak alt küme model çıktısı yaklaştırılarak yaklaşım modeli oluşturulur. Bu, model kalitesinin yalnızca yaklaşım modelini oluşturmak için kullanılmayan noktalarda tahmin edildiği anlamına gelir. Uyum yerine tahmin hatası kullanıldığından, bu yaklaşım regresyon ve hatta enterpolasyon modelleri için geçerlidir.

Metamodel of Optimal Prognosis (MOP):[4]

Bir yaklaşım modelinin tahmin kalitesi, önemsiz değişkenler modelden çıkarılırsa iyileştirilebilir. Bu fikir, optimum girdi değişkeni seti ve en uygun yaklaşım modelinin (doğrusal veya ikinci dereceden tabanlı polinom veya Hareketli En Küçük Kareler) araştırılmasına dayanan Optimal Prognoz Metamodelinde (MOP) benimsenmiştir. CoP ölçüsünün model bağımsızlığı ve nesnelliği nedeniyle, farklı alt uzaylardaki farklı modelleri karşılaştırmak için çok uygundur.

Multi-disipliner optimizasyon (MDO):

CoP/MOP prosedürü ile bulunan optimum değişken alt uzayı ve yaklaşım modeli, doğrudan tek amaçlı bir optimizasyon için global optimize ediciler (evrimsel algoritmalar, Uyarlanabilir Yanıt Yüzeyi Yöntemleri, Gradyan tabanlı yöntemler, biyolojik tabanlı yöntemler) kullanılmadan önce bir ön optimizasyon için de kullanılabilir. MOP/CoP kullanılarak bir duyarlılık analizi yapıldıktan sonra, karşıt amaçlar dahilinde optimizasyon potansiyelini belirlemek ve takip eden tek amaçlı optimizasyon için uygun ağırlık faktörlerini türetmek için çok amaçlı bir optimizasyon da gerçekleştirilebilir. Son olarak bu tek-amaçlı optimizasyon optimal bir tasarım belirler.

Dayanıklılık değerlendirmesi:

Varyans tabanlı sağlamlık analizinde, kritik model yanıtlarının varyasyonları araştırılır. optiSLang'de, verilen rastgele değişkenlerin birleşik olasılık yoğunluk fonksiyonunun ayrık örneklerini oluşturmak için rastgele örnekleme yöntemleri kullanılır. Hassasiyet analizinde olduğu gibi çözücü tarafından değerlendirilen bu örneklere dayanarak, model yanıtlarının ortalama değer, standart sapma, kantiller ve daha yüksek dereceli stokastik momentler gibi istatistiksel özellikleri tahmin edilir.

Güvenilirlik analizi:

Olasılıklı emniyet değerlendirmesi veya güvenilirlik analizi çerçevesinde, saçılma etkileri dağılım türü, stokastik momentler ve karşılıklı korelasyonlar ile tanımlanan rastgele değişkenler olarak modellenir. Analizin sonucu, logaritmik bir ölçekte temsil edilebilen güvenilirliğin tamamlayıcısı, arıza olasılığıdır.

Süreç entegrasyonu

optiSLang, mekanik, matematiksel, teknik ve diğer ölçülebilir problemleri araştırmak için çeşitli çözücüler kullanmak üzere tasarlanmıştır. Burada optiSLang harici programlar için doğrudan ara yüzler sağlar:

Tarihçe

1980'lerden beri Innsbruck Üniversitesi ve Bauhaus-Universität Weimar'daki araştırma ekipleri sonlu elemanlar simülasyonları ile birlikte optimizasyon ve güvenilirlik analizi için algoritmalar geliştiriyordu. Sonuç olarak, "Yapısal Dil (SLang)" yazılımı oluşturuldu. 2000 yılında, CAE mühendisleri bu yazılımı ilk olarak otomotiv endüstrisinde optimizasyon ve sağlamlık analizi yapmak için uyguladılar. 2001 yılında Dynardo GmbH 2003 yılında kurulmuştur. SLang tabanlı optiSLang yazılımı CAE tabanlı duyarlılık analizi, optimizasyon, sağlamlık değerlendirmesi ve güvenilirlik analizi için endüstriyel bir çözüm olarak piyasaya sürüldü. 2013 yılında, mevcut optiSLang 4 sürümü yeni bir grafik kullanıcı arayüzü ve harici CAE süreçlerine genişletilmiş ara yüzler ile tamamen yeniden yapılandırılmıştır.[2]

Kaynakça

  1. ^ ANSYS optiSLang changelog 21 Ocak 2022 tarihinde Wayback Machine sitesinde arşivlendi., Dynardo, May 2019
  2. ^ a b Product website
  3. ^ "Arşivlenmiş kopya". 24 Ocak 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Eylül 2023. 
  4. ^ a b Most, Thomas; Will, Johannes (2011). "Sensitivity analysis using the Metamodel of Optimal Prognosis (MOP)" (PDF). Proceedings of WOST. 8. 23 Ocak 2022 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 27 Eylül 2023. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">İstatistik</span>

İstatistik veya sayım bilimi, belirli bir amaç için veri toplama, tablo ve grafiklerle özetleme, sonuçları yorumlama, sonuçların güven derecelerini açıklama, örneklerden elde edilen sonuçları kitle için genelleme, özellikler arasındaki ilişkiyi araştırma, çeşitli konularda geleceğe ilişkin tahmin yapma, deney düzenleme ve gözlem ilkelerini kapsayan bir bilimdir. Belirli bir amaç için verilerin toplanması, sınıflandırılması, çözümlenmesi ve sonuçlarının yorumlanması esasına dayanır. Bu çerçevede yapılan işlemlerin tümüne sayımlama denir.

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

Serbestlik derecesi istatistik'te bir istatistiğin kesin hesaplanmasında kullanılan değerlerin sayısının ne kadar değişme serbestisi olduğunu sayısal olarak verir.

<span class="mw-page-title-main">PageRank</span>

PageRank, Google tarafından geliştirilen ve web sayfalarının önemini belirlemek için kullanılan bir algoritmadır. İnternet üzerindeki bağlantıların analiz edilmesiyle hesaplanan Pagerank değeri Google Arama sonuçlarında sayfaların sıralanması için kullanılan faktörlerden biridir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Endüstri mühendisliği</span> Mühendislik

Endüstri mühendisliği ya da sanayi mühendisliği, insan, malzeme ve makineden oluşan bütünleşik sistemlerin kuruluş ve devamlılığının yönetimi ile ilgilenen mühendislik dalıdır. Endüstri mühendisleri, diğer mühendislik dallarının birçoğunun derslerini de alıp, üzerine işletme, yönetim, üretim, ekonomi ve endüstri mühendisliğine özel derslerle birlikte diğer mühendislik alanlarının yöneticilik yetkisine sahip mühendislik dalı.

<span class="mw-page-title-main">Monte Carlo yöntemi</span>

Monte Carlo benzetimi, çok sayıda tekrarlanan rastgele örneklemelerle, bir takım nümerik sonuçlar elde etmeye yarayan ve bilimin birçok alanında yaygın olarak kullanılan bir sayısal hesaplama algoritmaları sınıfıdır. Stokastik olayların yer aldığı fiziksel süreçlerin sonuçlarının tahmin edilmesinde çok kullanışlıdır. Ayrıca, rastgele seçimlerin işe yaradığı ve prensipte deterministik olan bir takım problemlerin çözümünde de kullanılmaktadır. Monte-Carlo yöntemi, Nicholas Constantine Metropolis (1915-1999) tarafından bulunmuştur ve Atom bombasının geliştirildiği Los Alamos Ulusal Labratuvarında, bombanın patlamasından sonra dağılan nötronlara karşı kalkan modellemek için Stanislaw Ulam tarafından günümüze taşınmıştır.

Matematikte matematiksel programlama, eniyileme ya da optimizasyon terimi; bir gerçel fonksiyonu minimize ya da maksimize etmek amacı ile gerçek ya da tam sayı değerlerini tanımlı bir aralıkta seçip fonksiyona yerleştirerek sistematik olarak bir problemi incelemek ya da çözmek işlemlerini ifade eder. Örneğin bu problem şöyle olabilir:

İstatistiksel terimler, kavramlar ve konular listesi matematik biliminin çok önemli bir alt-bölümü olan istatistik biliminde içeriğinde bulunan konuların çok ayrıntılı olarak sınıflandırılması ile ortaya çıkarılmıştır. Milletlerarası İstatistik Enstitüsü bir enternasyonal bilim kurumu olarak istatistik bilimi konu ve terimlerini bir araya toplayıp 28 bilim dilinde karşılıklı olarak yayınlamıştır. Bu uğraşın sonucunun milletlerarası bilim camiasının büyük başarılarından biri olduğu kabul edilmektedir. Ortaya çıkartılan, istatistik bilimi içinde kullanılan ve bu bilime ait özel kavramların ve terimlerin listesi, tam kapsamlı olma hedeflidir ve böylelikle istatistik bilimi için bir Türkçe yol haritası yapılmış olmaktadır.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

<span class="mw-page-title-main">Doğrusal olmayan regresyon</span>

Doğrusal olmayan regresyon, istatistik bilimde gözlemi yapılan verilerin bir veya birden fazla bağımsız değişkenin model parametrelerinin doğrusal olmayan bileşiği olan ve bir veya daha çok sayıda bağımsız değişken ihtiva eden bir fonksiyonla modelleştirilmesini içeren bir regresyon (bağlanım) analizi türüdür. Veriler arka-arkaya yapılan yaklaşımlarla kurulan modele uydurularak çözümleme yapılır.

<span class="mw-page-title-main">Zaman serisi</span>

Zaman serisi, istatistik, sinyal işleme, ekonometri ve finansal matematikte veri noktalarının sıklığını ifade eder ve düzenli zaman aralıklarında, ardışık zaman alanlarında tipik olarak ölçülür. Zaman serisine örnek olarak, İMKB endeksinin günlük kapanış değeri veya Türkiye'deki Kızılırmak nehrinin yıllık akış hacmi (debisi) verilebilir. Zaman serisi analizi, anlamlı istatistikleri ve verinin diğer istatistiklerini almak için birkaç yöntemi vardır. Zaman serisi tahmini önceden bilinen olayları baz alarak gelecek olayları tahmin etmenin kavramsal modelidir. Ekonometride zaman serisi tahminine bir örnek, önceki başarımlarına (performanslarına) bakarak bir hisse senedinin açılış fiyatını öngörmektir.

Matematiksel model, bir sistemin matematiksel kavramlar ve dil kullanılarak tanımlanmasıdır. Matematiksel model geliştirme süreci, matematiksel modelleme olarak adlandırılır. Matematiksel modeller, doğa bilimlerinde ve mühendislik disiplinlerinde bunun yanı sıra sosyal bilimlerde kullanılır. Matematiksel modelleri daha çok fizikçiler, mühendisler, istatistikçiler, operasyon araştırma analistleri ve ekonomistler kullanır. Model, bir sistemi açıklamaya, farklı bileşenlerin etkilerini incelemeye ve bir davranış hakkında öngörüde bulunmak için yardımcı olabilir.

<span class="mw-page-title-main">Parametre</span> belirli bir sistemi tanımlamak veya sınıflandırmak için yardımcı olabilecek herhangi bir özellik

Parametre belirli bir sistemi tanımlamak veya sınıflandırmak için yardımcı olabilecek herhangi bir özellik. Parametre, sistemi tanımlarken veya performansını, durumunu değerlendirirken yararlı veya kritik olan bir sistem unsurudur.

Simülasyon yazılımı, matematik formülleri kullanılarak gerçek olayların modellendiği bir süreçtir. Simülasyon ile kullanıcılar gerçeğe en yakın olacak şekilde ürünlerin tasarlanmasını sağlayabilir ve çıktının nasıl olacağını anlayabilirler. Simülasyon yazılımı daha çok oyunlarda kullanılan gerçek zamanlı uygulamalardır. Oyunlar dışında birçok endüstriyel alanda da uygulanmaktadır. Endüstriyel alanlarda sorun yaratacak durumlarda; benzetim sayesinde olağan tehlikelerin önceden anlaşılması ve ne tip sonuçlara yol açabileceği anlaşılır. Örneğin; pilotlar, nükleer güç santralinde çalışan operatörler, kimya santrallerinde çalışan operatörler, kontrol panellerin modelleri gibi insan ve araç gereçlerin süreçte neler yaşayacağına ve ne sorunlarla karşılaşılacağına yönelik fiziksel tehlikeler benzetim sayesinde gerçek zamanlı gibi önceden fark edilebilir.

Stokastik süreç, Stokastik işlemi, zaman veya mekana göre değişen/evrilen olguları tanımlamak için kullanılan bir olasılık modelidir. Daha kapsamlı olarak, olasılık teorisinde, stokastik süreç, değişimi rastgele bir varyasyona bağlı olan bir değişken tarafından temsil edilen bazı sistemlerin gelişimini yansıtan bir zaman dizisidir. Bu, belirleyici süreç anlamına gelen deterministik sürecin olasılıkçı muadilidir. Sadece tek yönlü olarak değişebilen bir süreci tasvir etmek yerine bir stokastik veya rastgele süreçte, bazı belirsizlikler vardır. Hatta başlangıçtaki durum biliniyor olsa dahi sürecin gelişebileceği/değişebileceği bazı yönler vardır. Birçok stokastik süreçte, bir sonraki duruma veya konuma geçiş, yalnızca mevcut duruma bağlıdır ve işlemin önceki durumlarından veya değerlerinden bağımsızdır.

<span class="mw-page-title-main">Pekiştirmeli öğrenme</span>

Pekiştirmeli öğrenme, davranışçılıktan esinlenen, öznelerin bir ortamda en yüksek ödül miktarına ulaşabilmesi için hangi eylemleri yapması gerektiğiyle ilgilenen bir makine öğrenmesi yaklaşımıdır. Bu problem, genelliğinden ötürü oyun kuramı, kontrol kuramı, yöneylem araştırması, bilgi kuramı, benzetim tabanlı eniyileme ve istatistik gibi birçok diğer dalda da çalışılmaktadır.

<span class="mw-page-title-main">Rastgele yürüyüş</span>

Rastgele yürüyüş (ya da rassal yürüyüş) matematiksel bir nesne olup, bir stokastik veya rastgele süreç olarak bilinir. Bu süreç, herhangi bir matematiksel uzayda –örneğin tamsayılar uzayı–atılan rastgele adımların toplamından oluşan patikayı tanımlamaya yöneliktir. Örneğin, bir molekülün sıvı veya gaz içerisinde izlediği yol, hayvanların yem arayışında takip ettiği patika, değişkenlik gösteren hisse fiyatları ve de bir borsa oyuncusunun finansal durumu rastgele yürüyüş modelleri ile tahmin edilebilir; ancak gerçekte tamamen rastlantısal olmama ihtimalleri de vardır. Bu örneklerin de gösterdiği gibi, rastgele yürüyüş modelinin birçok bilim dalında uygulama alanı mevcuttur; ekoloji, psikoloji, bilgisayar bilimleri, fizik, kimya, biyoloji ve ekonomi bunlara örnektir.

<span class="mw-page-title-main">Matematiksel istatistik</span> matematiksel yöntemlerin kullanıldığı olası istatistikler

Matematiksel istatistik, istatistiksel veri toplama tekniklerinin aksine, matematiğin bir dalı olan olasılık teorisinin istatistiğe uygulanmasıdır. Bunun için kullanılan özel matematiksel teknikler arasında matematiksel analiz, doğrusal cebir, stokastik analiz, diferansiyel denklemler ve ölçü teorisi bulunur.

Ağ trafiği simülasyonu, telekomünikasyon mühendisliğinde bir iletişim ağının verimliliğini ölçmek için kullanılan bir süreçtir.