İçeriğe atla

Onbingen

Onbingen
Onbingen
Kenarları ve köşeleri10000
Boyutları(D10000)
Alanı
Bir iç açısının ölçüsü179.964°

Onbingen on bin kenarı ve on bin açısı olan bir iki boyutlu cisim.

Özellikleri

  • Bir iç açısının ölçüsü 179.964 derecedir.
  • Bir kenarına "a" dersek alanı

ancak bu ölçüde lük bir sapma olabilir çünkü düzenli bir poligon değildir.

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Limit</span> Sayıların ucu

Limit kelimesi Latince Limes ya da Limites 'den gelmekte olup sınır, uç nokta anlamındadır. Öklid ve Arşimet tarafından eğrisel kenarlara sahip şekillerle ilgili olan teoremlerde kullanılmıştır. Limit kavramı, çok önceleri kullanılmasına rağmen sonra unutulmuş ve daha sonra Newton ile Leibniz'in eserlerinde görülmüştür. Mesela, diferansiyel hesapta bir eğri sonsuz küçük uzunlukta sonsuz kenara sahip bir çokgen olarak kabul edilir. Limit kavramından ortaya çıkan diferansiyel hesap, pek çok fizik probleminin kolayca ele alınmasını sağlar.

<span class="mw-page-title-main">Trigonometri</span> üçgenlerin açı ve kenar bağıntılarını konu alan geometri dalı

Trigonometri, üçgenlerin açıları ile kenarları arasındaki bağıntıları konu edinen matematik dalı. Trigonometri, sinüs ve kosinüs gibi trigonometrik işlevlerin (fonksiyon) üzerine kurulmuştur ve günümüzde fizik ve mühendislik alanlarında sıkça kullanılmaktadır.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

<span class="mw-page-title-main">Kotanjant</span>

Kotanjant, Trigonometrik bir fonksiyondur. şeklinde gösterilir. Analitik düzlemde yarıçapı 1 birim olan birim çember üzerinde açısının ordinatıyla apsisinin oranına denir. Dik üçgende ise açının komşu dik kenarının karşı dik kenarına oranıdır.

<span class="mw-page-title-main">Kosekant</span>

Kosekant trigonometrik bir fonksiyondur. Trigonometrik sinüs fonksiyonunun tersi olarak da tanımlanabilir. cosec veya csc olarak ifade edilebilir.

Aşağıdaki liste trigonometrik fonksiyonların integrallerini içermektedir. İntegral fonksiyonlarının tüm bir listesi için lütfen İntegral tablosu sayfasına bakınız.

<span class="mw-page-title-main">Yedigen</span>

Bir yedigen, yedi kenarı olan çokgendir. 7'nin bir asal sayı olması nedeniyle, yedigenlerin de her köşesinden bir köşegen geçmemektedir.

<span class="mw-page-title-main">Brocard noktaları</span>

Brocard noktaları, geometride bir üçgen içinde yer alan özel noktalardır. Fransız matematikçi Henri Brocard'ın çalışmalarından dolayı bu adı almıştır.

<span class="mw-page-title-main">Onbirgen</span>

Bir onbirgen, on bir açısı ve on bir kenarı olan çokgendir.

<span class="mw-page-title-main">Onikigen</span>

Bir onikigen on iki açısı ve on iki kenarı olan iki boyutlu bir cisimdir.

Matematikte bir fonksiyonun limiti, kalkülüs ve analizde kullanılan bir temel kavramdır ve belirli bir girişe yaklaşan bir fonksiyonun davranışı ile ilgilidir.

<span class="mw-page-title-main">Onüçgen</span>

Onüçgen on üç açısı ve on üç kenarı olan iki boyutlu bir geometrik cisimdir.

<span class="mw-page-title-main">Ondörtgen</span> on dört açısı ve on dört kenarı olan bir iki boyutlu cisim

Ondörtgen on dört açısı ve on dört kenarı olan bir iki boyutlu cisimdir.

<span class="mw-page-title-main">Onbeşgen</span> On beş kenarı ve on beş açısı olan bir iki boyutlu cisim

Onbeşgen, on beş kenarı ve on beş açısı olan bir iki boyutlu cisimdir. Bir iç açısı 156°, bir dış açısı 24°'dir

<span class="mw-page-title-main">Ondokuzgen</span>

Ondokuzgen, on dokuz kenarı ve on dokuz açısı olan bir iki boyutlu cisimdir.

<span class="mw-page-title-main">Bingen</span>

Bingen bin kenarı ve bin açısı olan bir iki boyutlu cisim.

<span class="mw-page-title-main">Kotanjant teoremi</span> Matematikte trigonometri ile ilgili bir teorem

Trigonometride, kotanjant teoremi veya kotanjantlar yasası, bir üçgenin kenar uzunlukları ile üç iç açısının yarılarının kotanjantları arasındaki ilişkidir.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.

<span class="mw-page-title-main">Mollweide formülü</span> bir üçgenin kenar uzunluklarını ve açılarını ilişkilendiren iki denklem

Trigonometride Mollweide formülü, bir üçgendeki kenarlar ve açılar arasındaki bir çift ilişkidir.