İçeriğe atla

Olfaktör sinir

Olfaktör sinir
Olfaktör mukoza, bulbus olfactorius ve traktus olfactorius
Lamina kribrosa ve bulbus olfactorius
Latincenervus olfactorius
İnnervasyon olfaktör mukoza (SVA)


Olfaktör sinir (Latince: nervus olfactorius; CN I olarak kısaltılır) kraniyel sinirlerden birincisi olarak kabul edilen sinir. Özel visseral afferent bir duyu olan koku duyusunu burundan alıp koku korteksine (rhinencephalon) taşır.

Bir kraniyel sinir olarak kabul edilmesine rağmen diğer kraniyel sinirlerden bazı özellikleri ile ayrılır. Olfaktör sinir embriyolojik olarak ön beynin bir uzantısı şeklindedir. Koku duyusu diğer duyulardan farklı olarak talamus ile ilişkilenmeden doğruca algılanacağı beyin bölümüne yönelir. En kısa kraniyal sinir olarak sınıflandırılan olfaktör sinirin, optik sinire benzer şekilde beyinsapına seyri yoktur.[1]

Yapısı ve seyri

Olfaktör koku siniri ile baş anatomisi

Olfaktör sinir, burun boşluğunun üst bölümünde, chonca nasalis superior’un üst tarafındaki müköz membran içinde yer alan reseptör sinir hücrelerinden başlar. Koku ile ilgili reseptör hücreleri (olfaktör hücreler) destek hücrelerinin arasında yer alır. Her reseptör hücre küçük bir bipolar sinir hücresinden oluşur. Bipolar sinir hücresinin müköz membran yüzeyine doğru uzanan kalın bir periferik uzantısı ve ince bir santral uzantısı vardır. Kalın olan periferik uzantının ucunda kısa cilia'lar yer alır. Koku cilia'ları mükoz membranın üzerini döşeyen mukus içine doğru uzanırlar. Bu cilia'lar, hava içinde bulunan kokular ile reaksiyona girerek, nervus olfactorius liflerini uyarır. İnce santral uzantılar nervus olfactorius liflerini oluşturur. Bu sinir liflerinin oluşturduğu demetler etmoid kemiğin lamina kribrosa'sı üzerinde bulunan deliklerden geçerek bulbus olfactorius'a girerler.

Bulbus olfactorius

Bu oval yapı olfaktör hücrelerin sinapslar aracılığıyla ikincil nöronlar ile bağlantı kuruduğu yapıdır. Çok değişik tipte sinir hücresi bulundurur. Bu sinir hücrelerinin büyük bir kısmını mitral hücreler oluşturur. Nervus olfactorius'un lifleri mitral hücrelerin dendritleri ile sinaps yaparak, sinaptik glomerulus olarak bilinen yuvarlak alanları oluştururlar. Küçük sinir hücreleri olan püskül hücreleri ve granüler hücreler de, mitral hücreler ile sinaps yapar. Bulbus olfactorius daha sonra traktus olfactorius ile yoluna devam eder.

Kaynakça

  1. ^ Vilensky, Joel; Robertson, Wendy; Suarez-Quian, Carlos (2015). The Clinical Anatomy of the Cranial Nerves: The Nerves of "On Old Olympus Towering Top". Ames, Iowa: Wiley-Blackwell. ISBN 978-1118492017. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Burun</span> koku alma organı

Burun, anatomik olarak hayvan ve insan yüzü üzerinde alınla üst dudak arasında bulunan, dışa çıkıntılı, iki delikli koklama ve solunum organıdır. İnsan burnu ve hayvan burnu arasında birçok anatomik farklar bulunur.

<span class="mw-page-title-main">Kulak</span> İşitme ve denge organı

Kulak (auris), işitme işlevini gören ve denge organını içinde bulunduran anatomik yapıdır. Vestibüler sistemi kullanarak işitmeyi ve vücut dengesini sağlar. Kulak; dış kulak, orta kulak ve iç kulak olacak şekilde üç kısımda incelenir.

Retina (latince:rete) ya da ağkatman çoğu omurgalı ve bazı yumuşakçaların gözünün en içindeki görmeyi sağlayan ışığa ve renge duyarlı hücrelerin bulunduğu göz doku tabakasıdır. Gözün optiği, retinadaki görsel dünyanın odaklanmış iki boyutlu bir görüntü oluşturur ve bu görüntüyü beyne elektriksel sinir uyarılarına çevirerek görsel algı oluşturur. Retina, bir kameradaki film veya görüntü sensörü 'ne benzer bir iş yapar.

<span class="mw-page-title-main">Sinir sistemi</span> dış çevre ile eylemleri koordine etmekten ve vücudun farklı bölümleri arasında hızlı iletişimden sorumlu canlı biyolojik sistemi

Sinir sistemi veya sinir ağı, canlıların içsel ve dışsal çevresini algılamasına yol açan, bilgi elde eden ve elde edilen bilgiyi işleyen, vücut içerisinde hücreler ağı sayesinde sinyallerin farklı bölgelere iletimini sağlayan, organların, kasların aktivitelerini düzenleyen bir organ sistemidir. Sinir sistemi iki bölümden oluşur: Merkezî sinir sistemi (MSS) ve çevresel sinir sistemi (ÇSS). MSS, beyin ve omurilikten oluşur. ÇSS, MSS'yi vücudun diğer tüm kısımları ile bağlayan uzun fiberlerden oluşur. ÇSS, motor nöronları, dolaylı istemli hareket, otonom sinir sistemi, sempatik sinir sistemi, parasempatik sinir sistemi, düzenli istemsiz işlevler ve enterik sinir sisteminden oluşur.

Duyu epiteli ya da nöroepitel, örtü epiteli içine yerleşmiş bulunan duyu hücreleri ile, dış ortamdan gelen fiziksel, kimyasal ve mekanik uyarıları alıp, sinir uyarısı haline çevirebilen özelleşmiş bir epitel dokusudur.

<span class="mw-page-title-main">Sinir hücresi</span> sinapslar aracılığıyla iletişim kuran ve elektrik ile uyarılabilen hücre

Sinir hücresi ya da nöron sinir sisteminin temel fonksiyonel birimidir. Başlıca işlevi bilgi transferini gerçekleştirmektir. İnsan sinir sisteminde yaklaşık olarak 100 milyar nöron olduğu tahmin edilmektedir. Normal bir sinir hücresi 50.000'den 250.000'e kadar başka nöronlarla bağlantılıdır. Yaptıkları özelleşmiş işlere bağlı olarak farklı şekillerde ve çeşitlerde olabilirler. Nöronların büyük çoğunluğu dört farklı yapıya sahiptir: Soma, dendritler, akson ve terminal butonlar. Soma bölgesinde çekirdek (nucleus) ve hücrenin yaşamsal işlevlerini sağlayan mekanizma bulunur. Dendiritler ise isimlerini Yunanca bir sözcük olan dendrondan almışlardır. Bu şekilde isimlendirilmelerinin sebebi şekillerinin bir ağaca benzemesidir. Dendiritler nöral iletişimin önemli alıcılarıdır. Bir nörondan diğerine geçen mesajlar, mesajı yollayan hücrenin terminal butonlarıyla mesajı alan hücrenin dendirit membranı ya da soma bölümü arasındaki birleşme yerleri olan sinapslar aracılığıyla iletilir/transfer edilir. Sinapslar işlevlerinden yola çıkılarak isimlerini Yunancada "bir araya gelmek" anlamındaki sunaptein sözcüğünden almışlardır. Sinapstaki iletişim terminal butondan öteki hücrenin membranına kadar olmak üzere tek yönlü bir şekilde gerçekleşir. Nöronun bir diğer bölümü olan akson, çoğu kez miyelin kılıfı ile kaplı uzun ve ince bir tüp şeklindedir. Aksonun temel işlevi bilgiyi hücre gövdesinden terminal butonlara taşımaktır. Aksonun taşıdığı bu temel mesaj aksiyon potansiyeli olarak adlandırılır. Aksiyon potansiyeli, kısa bir nabız atışına benzeyen elektriksel/kimyasal bir olaydır. Bütün aksonlardaki aksiyon potansiyeli her zaman aynı ölçüde ve hızdadır. Aksiyon potansiyeli aksonun dallarına ulaştığında bölünmesine rağmen ölçüsünü kaybetmez. Başka bir deyişle her akson dalı tam gücüyle bir aksiyon potansiyeli alır. Nöronlar aksonların ve dendiritlerin somadan çıkışlarına göre üçe ayrılır. Bunlardan multipolar nöron merkezi sinir sisteminde en çok bulunan bilindik nöron tipidir. Bu tip nöronlar sadece bir akson çıkışına sahipken çok sayıda dendirite sahiptir. Bipolar nöronlar bir akson ve bir dendirit ağacına sahiptir. Duyusal nöronlar genellikle bipolar nöronlardır. Bipolar nöronların dendiritleri duyusal verileri merkezi sinir sistemine iletirler. Diğer tip sinir hücreleri ise unipolar nöronlardır. Bu nöronların hücre gövdesinden çıkan ve kısa mesafede ayrılan tek bir sapı vardır. Unipolar nöronlar da bipolar nöronların yaptığı gibi duyusal verileri merkezi sinir sistemine taşımakla görevlidir. Terminal butonlar aksonların ince dallarının ucunda bulunan küçük yumrulardır. Terminal butonlar bir aksiyon potansiyeli onlara ulaştığında, nörotransmitter adı verilen kimyasalları salıverir. Nörotransmitterler alıcı hücreyi uyarır (excitation) veya engeller (inhibition). Bu şekilde diğer hücrenin aksonunda bir aksiyon potansiyeli oluşup oluşmayacağını belirler.

<span class="mw-page-title-main">Çevresel sinir sistemi</span> Sinir sisteminin beyin ve omurilik dışında kalan kısmı

Çevresel sinir sistemi (ÇSS), beyin ve omurilik haricindeki sinirler ve gangliyondan oluşur. ÇSS'nin ana işlevi, merkezi sinir sistemi (MSS) ile organ ve uzuvlar arasındaki iletişimi (bağlantıyı) sağlamaktır. Omurga ve kafatası gibi kemiklerle veya kan-beyin bariyeri ile korunan MSS'nin aksine ÇSS'nin koruması yoktur. Bu yüzden toksinler ve mekaniksel hasarlara maruz kalabilir. Çevresel sinir sistemi, somatik sinir sistemi ve otonom sinir sistemine ayrılır. Bazı yazılı medyada bunlara duyu sistemi de dahil edilir. Şekilde mavi ile gösterilenler ÇSS'e ait ana sinirlerdir. Ayrıca ÇSS, sinir sisteminin büyük bir bölümünü oluşturur.

<span class="mw-page-title-main">Glutamat</span>

Glutamat, glutamik asidin anyonudur ve sinirbilimde nörotransmitter olarak görev alır; bir sinir hücresinin başka hücrelere sinyal olarak gönderdiği kimyasallardan biridir. Omurgalı sinir sistemi içerisinde geniş farkla en fazla bulunan nörotransmitterdir. Omurgalı beyninde tüm uyarıcı fonksiyonlarda kullanılır, bu insan beynindeki sinaptik bağlantıların %90'ından fazlasına denk gelir. Bazı beyin bölgelerinde birincil nörotransmitterdir.

<span class="mw-page-title-main">Duyu sistemi</span>

Duyu organı, stimülasyonlar (uyarılmalar) sonucu çevreden aldığı bilgileri elektrik impulslarına çeviren organ. Bilgiler, sinirler aracılığıyla beyne iletilirken filtrelenirler; diğer organlardan gelen bilgilerle ve önceden beyinde depolanmış olanlarla karşılaştırılırlar ve beyinde algıya dönüşürler. Duyu organları bilgileri reseptörler (alıcılar) vasıtasıyla toplarlar. En çok bilinen duyu organları, en basit haliyle, "5 duyu" olarak da adlandırılan; görme, koklama, işitme, tat alma ve dokunma işlevlerini yerine getiren göz, burun, kulak, dil ve deridir.

<span class="mw-page-title-main">Sinir dokusu</span>

Sinir dokusu, sinir sisteminin ana bileşenidir - beyin, omurilik ve sinirler - vücut işlevlerinin ayarlar ve kontrol eder. Uyartıları (impuls) ileten sinir hücrelerinden (nöron) ve sinir uyartılarının yayılmasına yardımcı olan ve nöronlara besin taşıyan nöroglialardan oluşmuştur.

Olfaktör reseptörler olfaktor reseptör nöronlarının hücre zarında bulunan ve koku moleküllerinin tespitinden sorumlu reseptörlerdir. Aktive olmuş koku reseptörleri sinir uyarılarının beyne iletilmesindeki sinyal iletimi kaskadını başlatılar. Bu reseptörler G protein-kenetli reseptörler (GPCRs) ailesinin bir üyesi olan rodopsin-benzeri reseptörler grubunda yer alırlar. Koku reseptörleri insanlarda 900'den fazla gen içeren bir multigen ailesi tarafından kodlanırlar.

<span class="mw-page-title-main">G proteini kenetli reseptör</span> G-Proteini ile ilişkili hücre içi sinyalizasyona bağlı hücre yüzeyi reseptörleri sınıfı

G proteini kenetli reseptörler (GPCR) veya yedi transmembran parçalı yapıda olan reseptörler, geniş bir almaç ailesidir. Hücre dışı bileşikleri algılayarak hücre içi sinyal iletimi (transdüksiyon) yollarını etkinleştirirler. Hücre içinde G proteinlerine bağlanırlar. Hücre zarından kıvrılarak yedi kez geçtiklerinden "yedi transmembran parçalı" (7TM) adlandırmasına da sahiptirler.

<span class="mw-page-title-main">Sinir</span> periferik sinir sistemindeki kapalı, kablo benzeri akson demeti

Sinir, çevresel sinir sistemindeki kapalı, kablo benzeri sinir lifleri demetidir.

Getiren sinir lifleri, bir bölgeye gelen akson demetlerine denir. Sinir lifleri bölgeden çıkış yaptığında bu akson demetine götüren sinir demeti adı verilir. Bu terimler çevresel sinir sistemi (ÇSS) ve merkezi sinir sistemi (MSS) için kullanıldığında biraz farklı anlam taşırlar.

<span class="mw-page-title-main">Olfaktör bulbus</span>

Olfaktör bulbus omurgalı ön beyninde koku almada görevli sinir yapısıdır. Koku bilgilerini işlenmek üzere duygu, hafıza ve öğrenmede rol oynayan amigdala, orbitofrontal korteks (OFC) ve hipokampusa gönderir. Bulbus ana koku alma bulbusu ve yardımcı koku alma bulbusu olmak üzere iki ayrı yapıya bölünmüştür.

<span class="mw-page-title-main">Vestibülokoklear sinir</span> kraniyal sinirler

Vestibülokohlear sinir sekizinci kranial sinir olarak bilinir ve iç kulaktan aldığı işitme ve denge ile ilgili bilgileri beyine aktarır.

<span class="mw-page-title-main">Glossofaringeal sinir</span> 9. kraniyal sinir, afferent duyusal ve efferent motor bilgi taşıyan karışık sinir

Glossofaringeal sinir 9. kranial sinirdir. Afferent duyu ve efferent motor nöronlar içeren karma bir sinirdir. üst medulla oblangatadan, vagus sinirinin hemen önünden çıkar. Glossofaringeal sinirin motor dalları embriyonik dönemdeki medulla oblangatanın tabanından, duyu dalları ise kranial nöral katlantıdan köken alır.

<span class="mw-page-title-main">Terminal sinir</span> kraniyal sinir

Terminal sinir veya "0. kranial sinir" olarak adlandırılan sinir ilk kez 1878 yılında bir Alman bilim insanı olan Gustav Fritsch tarafından köpek balığı beyninde keşfedilmiştir. İnsanlarda ilk kez 1913 yılında gösterilebilmiştir. 1990'da yapılan araştırmalarda insanlarda da görülen bir sinir olduğu tespit edilmiştir. Sinir "Kranial sinir XIII", "Sinir 0", "Sinir N" ve "NT" isimleri ile de kullanılmıştır.

<span class="mw-page-title-main">Ara sinir</span> Fasiyal sinirin bir dalı

Ara sinir, fasiyal sinirin bir dalı olup fasiyal sinirinin motor komponenti ile vestibulokoklear sinir arasında yer alır.Fasiyal sinirin duyusal ve parasempatik liflerini içerir. Fasiyal kanala ulaştığında, genikulat gangliondaki fasiyal sinirin motor kökü ile birleşir. Alex Alfieri, ara sinirin fasiyal sinirin bir parçası değil, ayrı bir kraniyal sinir olarak değerlendirilmesi gerektiğini öne sürmektedir.

<span class="mw-page-title-main">Uyaran (fizyoloji)</span> fizyolojide, iç veya dış çevrede tespit edilebilir bir değişiklik

Fizyolojide uyaran, bir organizmanın iç veya dış çevresinin fiziksel veya kimyasal yapısında tespit edilebilir bir değişikliktir. Bir organizmanın veya organın uygun bir tepki verebilmesi için dış uyaranları tespit etme yeteneğine duyarlılık (uyarılabilirlik) denir. Duyusal reseptörler, deride bulunan dokunma reseptörleri veya gözdeki ışık reseptörlerinde olduğu gibi vücudun dışından ve kemoreseptörler ve mekanoreseptörlerde olduğu gibi vücudun içinden bilgi alabilir. Bir uyaran bir duyusal reseptör tarafından algılandığında, uyaran transdüksiyonu yoluyla bir refleks ortaya çıkarabilir. Bir iç uyaran genellikle homeostatik kontrol sisteminin ilk bileşenidir. Dış uyaranlar, savaş ya da kaç yanıtında olduğu gibi vücutta sistemik yanıtlar üretebilir. Bir uyaranın yüksek olasılıkla algılanabilmesi için güç seviyesinin mutlak eşiği aşması gerekir; eğer bir sinyal eşiğe ulaşırsa, bilgi merkezi sinir sistemine (MSS) iletilir, burada entegre edilir ve nasıl tepki verileceğine dair bir karar verilir. Uyaranlar genellikle vücudun tepki vermesine neden olsa da, bir sinyalin bir tepkiye neden olup olmayacağını nihai olarak belirleyen MSS'dir.