İçeriğe atla

Olasılık üreten fonksiyon

Olasilik kuraminda bir ayrik rassal değişken'in Olasılık üreten fonksiyonu bir rassal değişkenin olasılık kutle fonksiyonunun üreten fonksiyonu yani bir guc fonksiyonu ile temsil edilmesidir. Olasılık üreten fonksiyonlar çok defa Pr(X=i) olasılık serisinin açık tanımlaması veya eksi olmayan katsayılı güç seriler için iyi geliştirilmiş kuramın verilmesi nedeniyle kullanılırlar.


Tanımlama

Özellikleri

Güç serileri

Olasılıklar ve beklenen değerler

Bağımsız rassal değişkenlerin fonksiyonları

Örnekler

Örnek hesaplaması: iki basit tekdeğişirli olasılık üreten fonksiyonları

Birinci oyunun analiz edilmesi

İkinci oyunun analiz edilmesi

Örnek hesaplaması: ikideğişirli üreten fonksiyonlar

Örnek hesaplaması: ikideğişirli üreten fonksiyonlar ve diferensiyel denklemler

Bağlı kavramlar

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Real Madrid (basketbol takımı)</span> Basketbol takımı

Real Madrid Baloncesto, Real Madrid kulübünün 1932 yılında kurulan profesyonel basketbol takımıdır. Takım İspanya'nın en yüksek basketbol ligi olan Liga ACB'de mücadele etmektedir.

İstatistik bilimi için mod bir veri kümesi içinde en sık görülen değerdir. Tepedeğer olarak da adlandırılır. Bazı kullanım alanlarında, özellikle eğitim alanında, örnek veriler çok kere puan olarak anılmakta ve örnek mod değerine ise mod puanı adı verilmektedir.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

<span class="mw-page-title-main">Poisson dağılımı</span>

Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.

Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

<span class="mw-page-title-main">Zeta dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

<span class="mw-page-title-main">Weibull dağılımı</span> Olasılık dağılımı

Olasılık kuramı ve istatistik bilim dallarında Weibull dağılımı ) bir sürekli olasılık dağılımı olup olasılık yoğunluk fonksiyonu şöyle ifade edilir:

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

<span class="mw-page-title-main">Ayrık olasılık dağılımları</span>

Olasılık kuramı içinde bir olasılık dağılımı eğer bir olasılık kütle fonksiyonu ile karakterize edilmiş ise ayrık olarak anılır. Böylelikle bir rassal değişken olan X için dağılım ayrık ise o zaman X bir ayrık rassal değişken olarak bilinir. Bu halde

Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken Xin μ = E(X) olarak ifade edilen beklenen değeri ve σ² = E((X - μ)²) olarak ifade edilen varyansı bulunur. Bunlar ilk iki kümülant olarak belirlenirler; yani

κ1 = μ ve κ² = σ².

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

Antonio Jesús López Nieto Uluslararası futbol organizasyonlarında birçok kez görev alan İspanyol eski hakem.

Matematikte üretim fonksiyonu veya üretim işlevi verilen bir dizinin girdilerinin bilgisini katsayılarında tutan bir biçimsel kuvvet serisidir.

Basque Ülkesi Turu, (İspanyolca: Vuelta Ciclista al País Vasco, Baskça: Euskal Herriko txirrindulari itzulia, her yıl Nisan ayında İspanya, Bask Bölgesi'nde düzenlenen yol bisikleti etap yarışı.

Kriptografi 'de bir 'Lamport imzası' veya 'Lamport bir defalık imza şeması' dijital imza oluşturmak için kullanılan bir yöntemdir. Lamport imzaları, kriptografik olarak güvenli herhangi bir tek yönlü fonksiyon ile oluşturulabilir; genellikle bir Kriptografik özet fonksiyonu kullanılır.

İspanya kadın millî ragbi birliği takımı, İspanya'yı rugby birliğinde temsil eden ulusal bir spor takımıdır. Takım ilk olarak 1989'de oynadı. 2 Mayıs 1989'da Fransa'ya karşı ilk maçını 0-28 kaybetti. Ekip, 2000'den 2006'ya kadar Kadınlar Altı Milletler Kupası'nda oynadı, ancak erkekler turnuvasındaki gibi 2007'den sonra yerini İtalya aldı. Dünya sıralamasında 72,54 puanla 10. sıradadır.