İçeriğe atla

Olasılık kütle fonksiyonu

Bir olasılık kütle fonksiyonunun grafiksel gösterimi. Bu fonksiyonun hiçbir değeri negatif olmayıp, tüm değerlerinin toplamlamı tam olarak bire eşittir.

Olasılık kuramı bilim dalında bir olasılık kütle fonksiyonu bir ayrık rassal değişkenin olasılığının tıpatıp belli bir değere eşit olduğunu gösteren bir fonksiyondur. Olasılık kütle fonksiyonu, olasılık yoğunluk fonksiyonundan farklıdır; çünkü olasılık yoğunluk fonksiyonu yalnızca sürekli rassal değişkenler için tanımlanmış olup doğrudan doğruya olasılık değerini vermezler. Olasılık yoğunluk fonksiyonunun bir belli değer aralığı (yani a ve b değerleri aralığı) için integrali alınırsa bu rassal değişkenin belirlenen değer aralığı için olasılığını verir.

Matematiksel tanımlama

Bir zar için olasılık kütle fonksiyonu. Bir zar atıldığı zaman zarın her altı yüzü de aynı olasılıkla üste gelebilir.

Eğer X  SR örneklem uzayında bazı sayılabilir değerleri alabilen bir ayrık rassal değişken ise, o halde X için verilmiş,  fX(x) , olasılık kütle fonksiyonu, şöyle ifade edilir:

Dikkat edilirse bu çok açık bir surette,  fX(x)  fonksiyonunu tüm reel sayılar için tanımlamaktadır; ama birçok sayı değerine sıfır olasılık saptanmaktadır.

Olasılık kütle fonksiyonlarında bulunan süreksizlik, bir ayrık rassal değişken için yığmalı dağılım fonksiyonun süreksiz olması gerçeğini yansıtmaktadır. Bu fonksiyonun eğer türevini almak mümkün ise (yani xR\S olduğu hallerde) bu türev değeri sıfır olmaktadır; bu noktalar, aynen olasılık kütle fonksiyonunun sıfıra eşit olduğu noktalardır.

Örneğin

X rassal değişkeni bir madeni para havaya atılıp yazı-tura gelmesinin gözlemlemesi şeklinde bir deneme olsun, Bu denemenin iki mümkün sonucu vardır: yazı gelirse 0 ve tura gelirse 1. Durum uzayı olan (0,1)de X=x olasılığı 0,5 olur. Bu nedenle olasılık kütle fonksiyonu

olarak ifade edilir.

İçsel kaynaklar

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

Bernoulli dağılımı olasılık kuramı ve istatistik bilim dallarında, p olasılıkla başarı ile 1 değeri alan ve olasılıkla başarısızlık ile 0 değeri alan bir ayrık olasılık dağılımıdır. İsmi ilk açıklamayı yapan İsviçreli bilim insanı Jakob Bernoulli anısına verilmiştir.

Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

Olasılık kuramı ve istatistik bilim dalları içinde Rademacher dağılımı, bu dağılımı ilk inceleyen Hans Rademacher'in adı verilmiş, bir ayrık olasılık dağılımıdır. Bu dağılım sadece iki değeri olan bir ayrık rassal değişkenin, yani +1 ve -1 değerlerinin %50er şansla dağılmasını gösterir.

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

<span class="mw-page-title-main">Bozulmuş dağılım</span>

Matematik bilim dalında bir bozulmuş dağılım desteği sadece tek bir noktadan oluşan bir ayrık rassal değişken için bir olasılık dağılımıdır. Bu rassal değişken için örnekler her iki tarafı da yazı olan özel bir madeni disk veya her altı yüzü de aynı sayıyı gösteren özel bir zar olabilir. Örneklerden de görülebildiği gibi, bu türlü rassal değişken günlük yaşantıya göre hiç rastgelelik niteliği taşımamaktadır; ancak matematik bilimi içinde bulunan rassal değişken tanımlama özelliklerinin hepsini tatmin etmektedir.

<span class="mw-page-title-main">Laplace dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Laplace dağılımı Pierre-Simon Laplace anısına isimlendirilmiş bir sürekli olasılık dağılımıdır. Arka arkaya birbiriyle yapıştırılmış şekilde ve bir de konum parametresi dahil edilerek birleştirilmiş iki üstel dağılımdan oluştuğu için, çift üstel dağılımı adı ile de anılmaktadır. İki bağımsız ve tıpatıp aynı şekilde üstel dağılım gösteren bir rassal değişken bir Laplace dağılımı ile işlev görürler. Bu, aynen üstel dağılım gösteren rassal zamanda değerlendirilen Brown devinimine benzer.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

<span class="mw-page-title-main">Ayrık olasılık dağılımları</span>

Olasılık kuramı içinde bir olasılık dağılımı eğer bir olasılık kütle fonksiyonu ile karakterize edilmiş ise ayrık olarak anılır. Böylelikle bir rassal değişken olan X için dağılım ayrık ise o zaman X bir ayrık rassal değişken olarak bilinir. Bu halde

Olasılık kuramı içinde bir olasılık dağılımı, eğer yığmalı dağılım fonksiyonu bir sürekli fonksiyon ise dağılım da sürekli olarak anılır. Bu demektir ki incelenmekte olan dağılımı gösteren X rassal değişkeni için; tüm reel sayı olan a için

Pr[X = a] = 0

Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

Koşullu beklenti, koşullu beklenen değer veya koşullu ortalama, olasılık kuramı bilim dalında bir reel değerli rassal değişken için bir koşullu olasılık dağılımı na göre matematiksel beklentidir.

Olasılık kuramında iki olayın bağımsız olması bu olaylardan birinin gerçekleşme olasılığının diğer olayın gerçekleşip gerçekleşmediğine bağlı olmaması anlamına gelmektedir. Örneğin;

<span class="mw-page-title-main">Ortak olasılık dağılımı</span>

Ortak olasılık dağılımı ya da birleşik olasılık dağılımı, sayıları birden fazla olan rassal değişkenlerinin birlikte gerçekleşmelerinin olasılık dağılımıdır.

<span class="mw-page-title-main">Bir olayın olma olasılığı</span>

Olasılık yoğunluk fonksiyonu, olasılık kuramı ve bir olayın olma olasılığı dallarında bir rassal değişken olan X için reel sayılı sürekli fonksiyondur.