İçeriğe atla

Olasılık

Olasılık ya da ihtimaliyet, bir şeyin olmasının veya olmamasının matematiksel değeri veya olabilirlik yüzdesi, değeridir. Olasılık kuramı istatistik, matematik, bilim ve felsefe alanlarında mümkün olayların olabilirliği ve karmaşık sistemlerin altında yatan mekanik işlevler hakkında sonuçlar ortaya atmak için çok geniş bir şekilde kullanılmaktadır.

Tarihçe

Aristo'nun eserlerinin çevirilerinde olasılık sözcüğü, bir gerçeğin rastgelirliliğinin nicelikleştirilmesini ifade etmemektedir, ama bir fikrin ne kadarının genel olarak kabul edildiği ile ilgilidir. Orta Çağ ve sonra Rönesans Çağı'nda birbirini takip eden açıklamalar ve Aristo'nun eserlerinin çevirilerinde yapılan hatalar ile anlam kaymaları ortaya çıkıp bu sözcük bir fikrin olabilirliğinin tasarlanması anlamına gelmeye başlamıştır. 16. yüzyıl ve 17. yüzyılda etikle ilgili din biliminde bulunan olasıcılık bu anlamda ön plana gelmiştir. 17. yüzyılın ikinci yarısında olasılık konusunun Blaise Pascal ve Pierre de Fermat tarafından matematiksel olarak incelenmeye başlanması ile olasılık sözcüğü modern anlamına doğru bir yol almıştır. Matematiksel modern olasılık kuramının geliştirilmesi 19. yüzyılda başlamıştır.

Diğer bir adıyla "olasılıkcılık" olarak anılan, olasılık doktrini bir Katolik etik doktrini olup 16. yüzyılda "Cizvitler" ve "Bartolome de Medina" etkileri ile geliştirilmiştir. Bu teoloji etikine göre "eğer bir fikir olası ise, o fikri geliştirip bir sonuca varmak uygundur; çünkü bu fikir karşıtı fikirden daha olasıdır. Böylece bu doktrin çeşitli karşıt tedbirler arasından herhangi bir tedbir üzerine karar verilmesi gerekmekte iken hangisinin en iyi olduğu bilinemediği zaman bir karar verme yöntemi olarak en olası tedbirin seçilmesini kabul etmektedir. Bu tip olasılık kullanılarak karar vermeye modern karar verme teorisinde maksimum olabilirlik (maximum likelihood) prensibi adı verilmektedir. Böylece bu türlü Hristiyan Katolik etike taban olan olasılık kavramı, modern olabilirlilik kavramı analogu olmaktadır.

17. yüzyıldan 19. yüzyıla kadar olasılık

Pascal ve Fermat arasındaki yazışmalardan bir örnek, 1654 [1]

Olasılıkların bilimsel incelenmesi bir modern gelişmedir. Modern olasılıklar teorisinin başlangıç tarihi Pascal ile Fermat arasındaki 1654'te olan bir mektuplaşma içeriğine bağlanabilir. 1657'de bu konuya eğilen ilk bilimsel yaklaşım Christiaan Huygens tarafından açıkça ortaya çıkarılmıştır. Jakob Bernoulli'nin (ölümünden sonra 1713'te basılan) Ars Conjectandi adlı eseri ile 1718'de basılan Abraham de Moivre'ın Doctrine of Chances adlı eseri olasılıklar teorisini matematik biliminin bir branşı olarak incelemektedirler.

Hatalar teorisi "Roger Cotes"in (ölümünden sonra 1722'de basılan) Opera Miscellana adlı eserinde ilk defa belirtilmiş ve 1755'te "Thomas Simpson"un yaşam öyküsü kitabında tümüyle açıklanmıştır. 1757'de basılan kitabında eşitlikle olası olan pozitif ve negatif hatalardan, tüm hataların içine düşebileceği alanın belirli sınırlarından ve sürekli hatalardan bahsedilmekte ve bir olasılık eğrisi verilmektedir.

1774'te "Pierre-Simon Laplace" olasılıklar teorisi prensiplerini kullanarak gözlemlerin birleştirilmesi için bir kural ortaya çıkartmıştır. Hatalar olasılıkları kuralını bir eğri ile ifade etmiştir; buna göre eğri

, olup bu ifade de herhangi bir hata ve o hatanın olasılığıdır. Bu eğrinin niteliği bulunmaktadır:

  1. -eksenine göre simetriktir
  2. -eksenine asimptottur ve böylece deki hata olasılığı 0 olur;
  3. bu eğrinin altında kalan toplam alan 1 dir; bu demektir ki bir hatanın olasılığı mutlaka gerektir.

Herhangi üç gözlemin ortalaması için bir formül de ortaya atmıştır. 1774'te Lagrange tarafında adlandırılan, hatanın kolaylık kuralı içinde bir formül de ortaya çıkarmıştır ama bu formül elle işlemlerle bulunulamayacak kadar zordur.

1778'de Daniel Bernoulli aynı zamanda olan hatalar sistemi için olasılıkların maksimum çarpma prensiplerini açıklamıştır.

Kaynakça

Dış bağlantılar


İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Pierre de Fermat</span> Fransız matematikçi ve avukat

Pierre de Fermat, neredeyse eşitlik (“adequality”) tekniği de dahil olmak üzere sonsuz küçük hesaplara yol açan erken gelişmeler için yaptığı katkılarla bilinen bir Fransız matematikçiydi. Özellikle, eğri çizgilerin en büyük ve en küçük koordinatlarını bulmanın özgün bir yöntemini keşfetmesiyle tanınır; bu, o zamanlar bilinmeyen diferansiyel kalkülüsünkine benzer ve sayı teorisi üzerine yaptığı araştırmadır. Analitik geometri, olasılık ve optiğe kayda değer katkılarda bulundu. En çok ışık yayılımı hakkındaki Fermat ilkesi ve Diophantus'un Aritmeticasının bir kopyasının kenarındaki bir notta açıkladığı sayı teorisindeki Fermat'nın Son Teoremi ile tanınır. Aynı zamanda Fransa'nın Toulouse Parlamentosu'nda avukattı.

<span class="mw-page-title-main">İstatistik</span>

İstatistik veya sayım bilimi, belirli bir amaç için veri toplama, tablo ve grafiklerle özetleme, sonuçları yorumlama, sonuçların güven derecelerini açıklama, örneklerden elde edilen sonuçları kitle için genelleme, özellikler arasındaki ilişkiyi araştırma, çeşitli konularda geleceğe ilişkin tahmin yapma, deney düzenleme ve gözlem ilkelerini kapsayan bir bilimdir. Belirli bir amaç için verilerin toplanması, sınıflandırılması, çözümlenmesi ve sonuçlarının yorumlanması esasına dayanır. Bu çerçevede yapılan işlemlerin tümüne sayımlama denir.

<span class="mw-page-title-main">Pascal üçgeni</span>

Pascal üçgeni, matematikte binom katsayılarını içeren üçgensel bir dizidir. Fransız matematikçi Blaise Pascal'ın soyadıyla anılsa da Pascal'dan önce Hindistan, İran, Çin, Almanya ve İtalya'da matematikçiler tarafından çalışılmıştır.

<span class="mw-page-title-main">Jakob Bernoulli</span>

Jacob Bernoulli, Bernoulli ailesindeki ünlü matematikçilerden biridir. Leibniz kalkülüsünün ilk savunucularındandır ve Leibniz- Newton kalkülüs tartışmasında Leibniz'in yanında yer almıştır. Kardeşi Johann Bernoulli ile kalkülüse yaptığı birçok katkıyla da ünlüdür. Ancak, matematiğe en önemli katkısı büyük sayılar yasası ile olasılık alanında olmuştur.

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

<span class="mw-page-title-main">Binom dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, binom dağılımı n sayıda iki kategori (yani başarı/başarısızlık, evet / hayır, 1/0 vb) sonucu veren denemelere uygulanır. Araştırıcının ilgi gösterdiği kategori başarı olarak adlandırılır. Bu türlü her bir deneyde, bağımsız olarak, başarı (=evet=1) olasılığının p olduğu (ve yalnızca iki kategori sonuç mümkün olduğu için başarısızlık olasılığının 1 - p olduğu) bilinir. Bu türlü bağımsız n sayıda denemeler serisi içinde elde edilen başarı sayısının ayrık olasılık dağılımı binom dağılım olarak tanımlanır. Bir binom dağılım sadece iki parametre ile, yani n ve p ile tam olarak tanımlanır. Matematik notasyon olarak bir rassal değişken X binom dağılım gösterirse şöyle ifade edilir:

X ~ B(n,p)

Olasılık kuramında ve istatistikte, hipergeometrik dağılım sonlu bir ana kütle içinden tekrar geri koymadan birbiri arkasına n tane nesnenin çekilmesi işlemi için başarı sayısının dağılımını bir ayrık olasılık dağılımı şekilde betimler.

Olasılık kuramı ve bir dereceye kadar istatistik bilim dallarında basıklık kavramı 1905da K. Pearson tarafından ilk defa açıklanmıştır. Basıklık kavramı bir reel değerli rassal değişken için olasılık dağılımının, grafik gösteriminden tanımlanarak ortaya çıkarılan bir kavram olan, sivriliği veya basıklığı özelliğinin ölçümüdür. Basıklık kavramının ayrıntıları olasılık kuramı içinde geliştirilmiştir. Betimsel istatistik için bir veri setinin basıklık karakteri pek dikkate alınmayan bir özellik olarak görülmektedir. Buna bir neden parametrik çıkarımsal istatistik alanında basıklık hakkında hemen hemen hiçbir kestirim veya sınama bulunmamasındandır ve pratik istatistik kullanımda basıklık pek önemsiz bir karakter olarak görülmektedir. Belki de basıklık ölçüsünün elle hesaplanmasının hemen hemen imkânsızlığı buna bir neden olmuştur.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

Bayes teoremi, olasılık kuramı içinde incelenen önemli bir konudur. Bu teorem bir rassal değişken için olasılık dağılımı içinde koşullu olasılıklar ile marjinal olasılıklar arasındaki ilişkiyi gösterir. Bu şekli ile Bayes teoremi bütün istatistikçiler için kabul edilir bir ilişkiyi açıklar. Bu kavram için Bayes kuralı veya Bayes savı veya Bayes kanunu adları da kullanılır.

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

<span class="mw-page-title-main">Büyük sayılar yasası</span>

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

<span class="mw-page-title-main">Abraham de Moivre</span> Fransız matematikçi (1667 – 1754)

Abraham de Moivre, bir Fransız matematikçidir.

<span class="mw-page-title-main">Fermat ilkesi</span>

Fermat ilkesi, Fermat prensibi ya da en az süre prensibi, Pierre de Fermat tarafından ışık yollarının belirlenmesi için kullanılabilen genel bir ilke. Fermat ilkesine göre bir ışık ışını herhangi iki nokta arasında ilerlerken, izlediği yol en az zamanı gerektiren yoldur.

Diofantos cebirin babası olarak tanımlanan, cebir denklemleri ve sayılar teorisi üzerine Arithmetika adlı eserin yazarı olan Yunan matematikçi. Değişkenleri sadece tam sayılar olan ve kendi adını taşıyan Diofantos denklemiyle de bilinir.

Bu, saf ve uygulamalı matematik tarihinin bir zaman çizelgesidir.