İçeriğe atla

Oksijenli solunum

Oksijenli Solunum Formülü

Oksijenli solunum, (aerobik solunum) organik besinlerden oksijen yoluyla ATP elde etme işidir. Hücrelerdeki bazı kimyasal tepkimelerde kullanılan enerjinin oksijen kullanılarak açığa çıkarılması demektir. Biyoloji ders kitapları sık sık hücresel solunum sırasında glikoz molekülü başına 38 ATP molekülü (2 glikolizden, 2 Krebs döngüsünden, 34 kadar elektron taşıma sisteminden) üretildiğini söylese de[1] sızıntılı zarların yanı sıra mitokondriyal matrikse pirüvat ve ADP hareketinin maliyetinden dolayı %100 verim olamayacağından bu sayıya asla ulaşılmaz, mevcut tahminler glikoz başına 29 ilâ 30 ATP dolayındadır.[1]

C6H12O6 (s) + 6 O2 (g) → 6 CO2 (g) + 6 H2O + 32 ATP

Üç şekilde incelenir:

  1. Glikoliz (sitoplazmada)
  2. Krebs devri [Karbon (C) yolu tepkimeleri] (mitokondrinin matriksinde)
  3. Elektron taşıma sistemi [Hidrojen (H) yolu tepkimeleri] (mitokondrinin kristasında)

Oksijenli solunum yapan canlılar

Canlıların çoğu oksijenli solunum yapar.

İnsanlar, hayvanlar, bakteriler ve mantarlar oksijenli solunum yaparlar. Memeli canlılar, sürüngenler, kuşlar, kurbağalar, balıklar, kabuklu deniz canlıları, eklem bacaklılar, yılanlar ve solucanlar oksijenli solunum yapan canlı örnekleridir. Akciğerler, solungaçlar, trake ve deri gibi organların aracılığı ile oksijenli solunum yapılır.

Glikoliz

Glikoz, pirüvik asite kadar parçalanır. Glikoliz şeker parçalanması anlamına gelir ve bu metabolik yolda gerçekleşen olay da budur.

Altı karbonlu bir şeker olan glikoz, önce 1 ATP harcanarak aktifleştirilir ve Glukoz-6-fosfat (glukozmonofosfat) bileşiğine çevrilir. Daha sonra ATP harcanmadan glikoz monofosfat, fruktoz monofosfata çevrilir. ATP harcanmaz çünkü glukoz ve fruktoz birbirlerinin izomerleridir. Daha sonra eldeki fruktoz monofosfata 1 ATP daha harcanarak ikinci fosfat grubu bağlanır. Bu ara ürüne fruktoz difosfat adı verilir. Fruktoz difosfat ikiye ayrılır ve bundan sonra glikoliz olayı 2 kolda aynı şekilde gerçekleşmeye devam eder. İkiye ayrıldıktan sonra oluşan ara ürün, 3 karbonlu ve bir fosfat içerir. Adı ise fosfogliseraldehit (PGAL) tir. NAD koenzimi PGAL'den 2 hidrojen alarak indirgenir. Ortamdan bir tane fosfat bağlanır. Bu yeni ara ürüne ise difosfogliserik asit (DPGA) adı verilir. DPGA'dan bir fosfat bağı koparılarak substrat düzeyinde fosforilasyonla 1 ATP üretilir. Yeni ara ürüne fosfogliserik asit (PGA) denir. PGA'dan da kalan diğer fosfat bağı koparılarak substrat düzeyde 1 ATP daha üretilir. Glikolizdeki son ürün ise pirüvik asittir.

Glikoliz yolu her biri özgül bir enzim tarafından katalizlenen on basamak içerir. Bu on basamağı iki evreye ayırabiliriz. Enerji harcaması yapılan evre ilk beş basamağı, enerjinin geri ödendiği ikinci evre ise diğer beş basamağı içerir. Enerji harcanan evrede hücre, yakıt moleküllerini fosforile etmek için ATP harcar. Bu harcama, enerjinin geri ödendiği evrede, substrat seviyesinde fosforilasyon ve NAD+'ın NADH'ye indirgenmesiyle üretilen ATP aracılığı ile yeniden kazanılır. Glikolizin net enerji verimi, glikoz başına 2 ATP ve 2 NADH2'dır.

Glikolizde kullanılan enzimler

  1. Hekzokinaz (karaciğerde glukokinaz, diğer organlarda hekzokinaz)
  2. Fosfoglikoizomeraz
  3. Fosfofruktokinaz
  4. Aldolaz
  5. İzomeraz
  6. Triozfosfat dehidrogenaz
  7. Gliserat kinaz
  8. Gliserat mutaz
  9. Enolaz
  10. Pirüvat Kinaz

Mitokondriye giriş

Glikolizde oluşan 2 pirüvik asitten, oksijen varlığında, NAD indirgenmesi ve iki molekül karbondioksit çıkmasıyla oluşan 2 karbonlu asetil CoA (aktif asetik asit) oluşumudur.

Krebs çemberi

Krebs çemberindeki (sitrik asit döngüsü) olayların başlaması için ortamda 4 karbonlu okzala asetik asit bulunması gerekir. 2 karbonlu asetil CoA, okzalo asetik asit ile birleşerek 6 karbonlu sitrik asit oluşur. Sitrik asitten NAD indirgenmesi ve bir molekül karbondioksit çıkması sonrasında 5 karbonlu farklı bir yapı oluşur. 5 karbonlu yapıdan da NAD indirgenmesi ve bir molekül karbondioksit çıkmasıyla 4 karbonlu farklı bir yapı oluşur. Bu 4 karbonlu yapıdan substrat düzdeyde fosforilasyonla 2 ATP üretilir. Daha sonra FAD (koenzim çeşidi) ve NAD indirgenir ve okzalo asetik asit oluşur.

Bir krebste; 4 karbondioksit, 6 NADH2, 2 FADH2, 2 ATP (Substrat Düzeyinde Fosforilasyon) çıkar. Bir glikoliz sonrasında iki mol pirüvik asit oluşur, bu pirüvik asitlerin ikisi de krebs döngüsüne girer.

Elektron taşıma sistemi

Elektron Taşıma Sistemi (ETS) Prokaryot canlıların hücre zarında, ökaryot canlılarda ise Mitokondri iç zarlarında (krista) gerçekleşir. Glikolizde ve krebste açığa çıkan hidrojenlerin ETS'den geçerek yine ETS elemanı olan oksijen ile birleşerek suyun oluştuğu evredir.

NAD ve FAD yükseltgenmesiyle hidrojenler ortama bırakılır. Hidrojen 1 elektron ve 1 protondan oluşur. Hidrojen elektron ve proton olarak ayrılır ve elektronu ETS'ye aktarır. Burada elektronlar sırasıyla,ETS elemanları olan, NADH-Q redüktaz, Ubikinon redüktaz, Sitokrom redüktaz, Sitokrom C, Sitokrom oksidaz ve son olarak oksijene doğru ilerlerken, açığa çıkardıkları enerjilerin önemli bir kısmı matrixteki protonların mitokondrinin iç ve dış zarı arasındaki boşluğa pompalanmasında kullanılır. (mitokondrinin iç zarı protonlara geçirgen değildir.) Bir kısmı da ortama ısı olarak verilir. (ETS elemanları elektron alma isteklerine göre dizilmişlerdir. Oksijen en çok elektron alma isteğine sahiptir. ETS elemanlarından sadece Ubikinon redüktaz yağ yapılı bir koenzimdir diğerleri ise protein yapılıdırlar.) Mitokondrinin 2 zarı arasındaki boşlukta protonların fazla olmasıyla elektrik yük farkı ortaya çıkar. Bu durumda ATP sentaz enzimi protonların iç zarından geçmesini sağlayarak oksidatif fosforilasyonla ATP oluşumunu sağlar. Daha sonra protonlar, ETS'deki son ETS elemanı oksijene gelmiş olan elektronlarla birleşir ve H2O oluşur.

NADH2'nin elektronları ETS'den geçerken 2 hidrojen için 3 ATP, FADH2'nin elektronları ETS'den geçerken 2 hidrojen için 2 ATP üretilir.

  • 1948 yılında keneedy ve Albert Lehninger tarafından ökaryotlarda oksidatif fosforilasyonun yerinin mitokondri olduğu keşfedildi.
  • E.T.S ile ATP üretimi hakkında bildiklerimiz 'Kemiosmotik Hipotez'e dayanmaktadır. Hipotezi Lehninger bulmuştur.

Kaynakça

  • Doktor Goncagül Haklar, Marmara Üniversitesi Tıp Fakültesi
  • Doktor Süha Yalçın, Marmara Üniversitesi Tıp Fakültesi
  1. ^ a b Rich, P. R. (2003). "The molecular machinery of Keilin's respiratory chain". Biochemical Society Transactions. 31 (Pt 6). ss. 1095-1105. doi:10.1042/BST0311095. PMID 14641005. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Fotosentez</span> bitki ve organizmalar tarafından ışık enerjisinin kimyasal enerjiye dönüştürülme işlemi

Fotosentez, bitkiler ve diğer canlılar tarafından, ışık enerjisini organizmaların yaşamsal eylemlerine enerji sağlamak için daha sonra serbest bırakılabilecek kimyasal enerjiye dönüştürmek için kullanılan bir işlemdir. Bu kimyasal enerji, karbondioksit ve sudan sentezlenen şekerler gibi karbonhidrat moleküllerinde depolanır.

<span class="mw-page-title-main">Fermantasyon</span> kimyasal çürüme

Fermantasyon, hücre içinde oksijen yokluğunda meydana gelen metabolik bir faaliyet olarak ‘NAD+'yi yeniden oluşturmak için glikozun glikoliz yoluyla kısmi oksidasyonunu takip eden metabolik adımlar’ şeklinde tanımlanmaktadır. Fermantasyon anaerobik şartlarda, yani oksidatif fosforilasyon olamadığı durumlarda, glikoliz yoluyla ATP üretimini sağlayan önemli bir biyokimyasal süreçtir. Biyokimyanın fermantasyonla ilgilenen dalı zimolojidir.

<span class="mw-page-title-main">Karbonhidrat</span> sadece karbon, hidrojen ve oksijenden oluşan organik bileşik

Karbonhidrat, karbon (C), hidrojen (H) ve oksijen (O) atomlarından oluşan, genellikle hidrojen-oksijen atomu oranı (suda) 2:1 olan bir biyomoleküldür ve dolayısıyla ampirik (deneysel) formülü Cm(H2O)n şeklindedir. m, n'den farklı da olabilir olmaya da bilir. Ancak, tüm karbonhidratlar bu kesin stokiyometrik tanıma uymaz (örneğin üronik asitler, fukoz gibi deoksi şekerler) ve bu tanıma uyan tüm kimyasallar otomatik olarak karbonhidratlar (örneğin formaldehit ve asetik asit) olarak sınıflandırılmaz.

<span class="mw-page-title-main">Glikoliz</span> katabolik yolak

Glikoliz, glikozun enzimlerle pirüvik asite (pirüvat) kadar yıkılması olayıdır. Bütün canlılarda glikoliz reaksiyonları aynı şekilde gerçekleşir çünkü olaylar için tüm canlılarda aynı enzimler görevlidir. Başlangıçta glikozu aktifleştirmek için 2 ATP harcanır. Reaksiyonlar sırasında 4 ATP(Adenozin tri fosfat) oluşturulur. 2 NADH meydana gelir. Oluşan NADH'lar oksijenli solunumda elektron taşıma sistemine aktarılır ve her birinden üçer ATP elde edilir. Oksijensiz solunumda ise NADH'lar son ürün evresinde tekrar yükseltgenerek bir sonraki glikoliz olayında kullanılır. Kısacası glikolizde substrat düzeyinde fosforilasyonla 4 ATP üretilir. Ve 2ATP harcandığı için net kazanç 2 ATP 'dir. Ancak oluşan 2NADH iyonundan dolaylı olarak 6 ATP(Adenozin tri fosfat)ETS'den kazanılır.

Hidroliz işlemi suyu oluşturan hidrojen ve oksijen elementlerinin birbirinden ayrılması ile sonuçlanan bir işlemdir. Bazı kaynaklarda hidroliz, moleküllerin su ilavesiyle daha fazla sayıda parçacık oluşturması olarak da geçer. Hidroliz, su ile bir kimyasal bağın parçalanmasıdır yani bir kimyasal reaksiyondur. Hidroliz genel olarak suyun nükleofil olduğu ikame(yer değiştirme reaksiyonu), eliminasyon(organik reaksiyon türü) ve solvasyon (çözme) reaksiyonları için kullanılır.

<span class="mw-page-title-main">Adenozin trifosfat</span> organik bileşi

'Adenozin trifosfat, hücre içinde bulunan çok işlevli bir nükleotittir. İngilizce Adenosine Triphosphateden ATP olarak kısaltılır. En önemli işlevi hücre içi biyokimyasal reaksiyonlar için gereken kimyasal enerjiyi taşımaktır. Fotosentez ve hücre solunumu sırasında oluşur. ATP bunun yanı sıra RNA sentezinde gereken dört monomerden biridir. Ayrıca ATP, hücre içi sinyal iletiminde protein kinaz reaksiyonu için gereken fosfatın kaynağıdır. 3 tane fosfattan oluşur.

<span class="mw-page-title-main">Katabolizma</span> Molekülleri daha küçük birimlere parçalayan metabolik yollar kümesi

Yadımlama veya katabolizma, enerjice zengin ve büyük moleküllü moleküllerin daha küçük moleküllere parçalanması olayı ve bu işlemler sürecidir. Yani metabolizmanın yıkım aşamaları olarak da genellenebilir. Katabolizma kapsamında besin maddeleri niteliğinde olan uzun moleküllerin hücre içinde enzimlerin katalizörlüğünde parçalanarak, molekül bağlarında depolanmış enerji açığa çıkarılıp kullanılır.

<span class="mw-page-title-main">Guanozin trifosfat</span>

Guanozin-5'-trifosfat (GTP), bir pürin nükleozid trifosfattır. Transkripsiyon sırasında RNA bireşimi için gerekli yapı taşlarından birisidir. Bir guanin bazı, bir riboz şekeri ve üç fosfat grubundan meydana gelir. Guanin ribozun 1. karbonuna, trifosfat bölümü ise ribozun 5. karbonuna bağlıdır.

Oksidatif fosforilasyon, canlılarda enerji kaynağı olarak kullanılan ATP sentezinde kullanılan yollardan biridir. Fosforilasyon olarak da adlandırılan ATP sentezi başlıca dört yoldan gerçekleştirilir.

<span class="mw-page-title-main">Etanol fermantasyonu</span> Yan ürün olarak etanol ve karbondioksit üreten biyolojik süreç

Etanol fermantasyonu, solunumda oksijen kullanmayan canlılar için bir fermantasyon biçimidir.

<span class="mw-page-title-main">Laktik asit fermantasyonu</span> Metabolik süreç

Laktik asit fermantasyonu, oksijen yetersizliğinde bazı bakteri ve hayvan hücrelerinde görülen bir fermantasyon biçimidir.

<span class="mw-page-title-main">Nikotinamid adenin dinükleotit</span> İndirgenen ve oksitlenen kimyasal bileşik

Nikotinamid adenin dinükleotid (NAD+) hücrelerde bulunan önemli bir koenzimdir. Elektron taşıyarak indirgenme potansiyelinin moleküller arasında aktarılmasında rol oynar.

<span class="mw-page-title-main">Krebs döngüsü</span> Hücrelerde enerji açığa çıkarmak için kimyasal reaksiyonlar

Krebs döngüsü, trikarboksilik asit döngüsü veya sitrik asit döngüsü, canlı hücrelerin besinleri yükseltgeyerek enerji elde etmesini sağlayan ve bütün yaşam biçimlerinde önemli bir yer tutan kimyasal süreçlerin son aşamasıdır. TCA devri olarak da bilinir. 1937'de Hans Adolf Krebs tarafından açıklığa kavuşturulan tepkimelerin hayvan, bitki, mikroorganizma ve mantar gibi birçok hücre türünde oluştuğu saptanmıştır.

Elektron taşıma sistemi veya elektron taşıma zinciri (İngilizce: Electron Transport System), NADH ve FADH2 gibi elektron taşıyıcılarının verdikleri elektronları ETS elemanlarında redoks tepkimelerine sokarak ATP üretimini sağlayan sistemin adıdır.Kristada bulunur.Kıvrımlı olan zar yüzeyinin genişlemesini saglar.Böylece enzimlerin etkinliklerinin artmasına olanak sağlar.Elektronlar, son elektron alıcısı oksijene varana kadar ETS elemanları boyunca taşınırlar ve enerji kaybederler. Elektronların verdiği enerji ETS elemanları tarafından protonların aktif taşınmasında kullanılır ve ETS elemanlarının üzerinde bulunduğu çift katlı fosfolipid zarının iki tarafında potansiyel fark oluşturulur. Bu potansiyel fark daha sonra ATP sentezi için kullanılır. Burada ATP sentezi H+ iyonlarının derişim farklılığına bağlı olarak dışarı pompalanır. Bu sırada ATP sentez enzimi aktifleşir ve ATP sentezlenir. ETS elemanları, ökaryotik hücrelerde mitokondri ve kloroplast organellerinde bulunur.

Biyokimyada metabolik yolak veya metabolik patika, hücre içinde meydana gelen bir dizi kimyasal tepkimedir; Bunlar toplu olarak metabolizmayı oluştururlar. Her bir yolakta belli bir kimyasal bileşik, enzimler tarafından değişime uğrar. Bazı metabolik yolaklarda pek çok bileşik ve enzim yer aldığı için bunlar çok karmaşık olabilir. Hücrelerde pek çok yolak bulunur, bunlar ortak bileşiklerde kesiştikleri için karmaşık ağlar oluşturabilirler, bunlara metabolik ağ denir. Metabolik yolaklar organizmalarda homeostaz sağlamakta rol oynar.

Substrat düzeyinde fosforilasyon bütün fermantasyon çeşitlerinde, oksijenli solunumun başlangıcı glikoliz tepkimesi ve krebs döngüsünün ilk basamağında gerçekleşen fosforilasyon türüdür.

<span class="mw-page-title-main">Kemiosmoz</span> Hücresel solunumu sağlayan elektrokimyasal prensip

Kemiosmoz; iyonların, elektrokimyasal gradyanı azaltmak için seçici geçirgen bir zardan geçme hareketidir. Hücresel solunumdaki ATP sentezinin gerçekleşmesini sağlayan enerjinin büyük bir kısmı hidrojenlerin yaptığı bu hareketten karşılanır.

<span class="mw-page-title-main">Hidrojen siyanür</span>

Hidrojen siyanür, HCN formüllü inorganik bir bileşiktir. Endüstriyel ölçekte üretilen HCN, polimerlerden ilaçlara kadar birçok kimyasal bileşik için oldukça değerli bir öncüdür. Büyük ölçekli uygulamalar, sırasıyla madencilik ve plastikte kullanılan potasyum siyanür ve adiponitril üretimi içindir. Hidrojen siyanür, 25 °C'de kaynayan renksiz acıbadem kokusunda bir sıvıdır. Uçucu bir sıvı olduğundan, katı siyanür bileşiklerinden daha zehirlidir.

Pastör (Pasteur) etkisi, oksijenin fermantasyon olayı üzerine olan inhibitör etkisidir.

Fotoheterotroflar heterotrofik fototroflardır - yani ışığı enerji için kullanan, ancak karbondioksiti tek karbon kaynağı olarak kullanamayan organizmalardır. Sonuç olarak, karbon gereksinimlerini karşılamak için çevreden organik bileşikler alırlar; bu bileşikler arasında karbonhidratlar, yağ asitleri ve alkoller bulunur. Fotoheterotrofik organizmaların örnekleri arasında mor kükürt ve yeşil kükürt olmayan bakteriler ve heliobakteriler bulunur. Yakın zamanda yapılan araştırmalar, Doğu Eşekarısı ve bazı yaprak bitlerinin enerji kaynaklarını desteklemek için ışığı kullanabilecekleri belirtilmiştir.