İçeriğe atla

Ohnesorge sayısı

Ohnesorge sayısı (Oh), viskoz kuvvetler ile eylemsizlik ve yüzey gerilimi kuvvetleri arasındaki ilişkiyi ifade eden bir boyutsuz sayıdır. Bu sayı, Wolfgang von Ohnesorge tarafından 1936 tarihli doktora tezinde tanımlanmıştır.[1][2]

Bu sayı şu şekilde ifade edilir:

Burada

  • μ sıvının dinamik viskozitesi,
  • ρ sıvının yoğunluğu,
  • σ yüzey gerilimi,
  • L karakteristik uzunluk ölçeği (genellikle damla çapı),
  • Re Reynolds sayısı,
  • We Weber sayısıdır.

Uygulamalar

Çapı 3 mm olan bir yağmur damlası için Ohnesorge sayısı genellikle ~0.002 civarındadır. Daha yüksek Ohnesorge sayıları, viskozitenin etkisinin daha büyük olduğunu gösterir.

Bu sayı, sıklıkla serbest yüzey akışkan dinamiğiyle ilişkili olarak kullanılır; örneğin, sıvıların gazlar içindeki dağılması ve sprey teknolojisinde olduğu gibi.[3][4]

Mürekkep püskürtmeli baskı teknolojisinde, Ohnesorge sayısı 0.1 < Oh < 1.0 aralığında olan sıvılar püskürtülebilir (Ohnesorge sayısının tersi olan Z'nin 1<Z<10 olduğu durumlarda).[1][5]

Ayrıca bakınız

  • Laplace sayısı ile Ohnesorge sayısı arasında, şeklinde bir ters ilişki bulunmaktadır. Tarihsel olarak, Ohnesorge sayısının kullanımı daha doğru olabilir, ancak matematiksel açıdan, Laplace sayısı kullanımı daha düzenli ve tertipli olabilmektedir.

Kaynakça

  1. ^ a b McKinley, Gareth H.; Renardy, Michael (2011). "Wolfgang von Ohnesorge". Physics of Fluids. 23 (12). ss. 127101-127101-6. Bibcode:2011PhFl...23l7101M. doi:10.1063/1.3663616. hdl:10919/24403Özgürce erişilebilir. 
  2. ^ Fardin, Marc-Antoine; Hautefeuille, Mathieu; Sharma, Vivek (2022). "Spreading, pinching, and coalescence: the Ohnesorge units". Soft Matter. 18 (17). ss. 3291-3303. arXiv:2112.06713 $2. Bibcode:2022SMat...18.3291F. doi:10.1039/d2sm00069e. PMID 35416235. 7 Kasım 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 7 Haziran 2024. 
  3. ^ Lefebvre, Arthur Henry (1989). Atomization and Sprays. New York and Washington, D.C.: Hemisphere Publishing Corp. ISBN 978-0-89116-603-0. OCLC 18560155. 
  4. ^ Ohnesorge, W (1936). "Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen". Zeitschrift für Angewandte Mathematik und Mechanik. 16 (6). ss. 355-358. Bibcode:1936ZaMM...16..355O. doi:10.1002/zamm.19360160611.  English translation: Ohnesorge, Wolfgang von (2019). "The formation of drops by nozzles and the breakup of liquid jets". doi:10.26153/tsw/3391. 
  5. ^ Derby, Brian (2010). "Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution" (PDF). Annual Review of Materials Research. 40 (1). ss. 395-414. Bibcode:2010AnRMS..40..395D. doi:10.1146/annurev-matsci-070909-104502. ISSN 1531-7331. 7 Haziran 2024 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 7 Haziran 2024. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

<span class="mw-page-title-main">Student'in t dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

<span class="mw-page-title-main">Reynolds sayısı</span>

Akışkanlar dinamiği alanında, Reynolds sayısı, farklı durumlarda akışkan akışı desenlerini tahmin etmeye yardımcı olan bir boyutsuz sayıdır ve eylemsizlik kuvvetleri ile viskoz kuvvetler arasındaki oranı ölçer. Düşük Reynolds sayılarında, akışlar genellikle laminer akış tarafından domine edilirken, yüksek Reynolds sayılarında akışlar genellikle türbülanslı olur. Türbülans, akışkanın hız ve yönündeki farklılıklardan kaynaklanır ve bazen bu yönler kesişebilir veya akışın genel yönüne ters hareket edebilir. Bu girdap akımları, akışı karıştırmaya başlar ve bu süreçte enerji tüketir, bu da sıvılarda kavitasyon olasılığını artırır.

<span class="mw-page-title-main">Log-normal dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında log-normal dağılım logaritması normal dağılım gösteren herhangi bir rassal değişken için tek-kuyruklu bir olasılık dağılımdır. Eğer Y normal dağılım gösteren bir rassal değişken ise, bu halde X= exp(Y) için olasılık dağılımı bir log-normal dağılımdır; aynı şekilde eğer X log-normal dağılım gösterirse o halde log(X) normal dağılım gösterir. Logaritma fonksiyonu için bazın ne olduğu önemli değildir: Herhangi iki pozitif sayı olan ab ≠ 1 için eğer loga(X) normal dağılım gösterirse, logb(X) fonksiyonu da normaldir.

<span class="mw-page-title-main">Prandtl sayısı</span>

Prandtl sayısı boyutsuz bir sayıdır. Momentum yayınımının termal yayınıma oranıdır. Sayı, Alman fizikçi Ludwig Prandtl'a ithafen adlandırılmıştır.

Knudsen sayısı, moleküler ortalama serbest yol ile kabaca ölçülebilir uzunluk skalasının oranını veren boyutsuz sayıdır. Bu uzunluk skalası, örneğin, bir sıvının içinde yer alan bir cismin çapı olabilir. Knudsen sayısı adını Danimarkalı fizikçi Martin Knudsen'e (1871-1949) atfen almıştır.

Dean sayısı (De), akışkanlar mekaniği alanında, özellikle eğri borular ve kanallarda meydana gelen akış dinamiklerinin incelenmesinde kullanılan bir boyutsuz sayıdır. Bu terim, Britanyalı bilim insanı William Reginald Dean'in adını taşımaktadır. Dean, laminer akış durumunda, düz bir borudaki Poiseuille akışından, çok küçük bir eğrilik içeren bir boruya kadar olan akışın teorik çözümünü bir bozulma yöntemi kullanarak ilk kez sunmuştur. Bu çalışma, eğri borulardaki akış mekaniklerinin anlaşılmasında temel bir adım olarak kabul edilir.

Einstein-Hilbert etkisi genel görelilikte en küçük eylem ilkesi boyunca Einstein alan denklemleri üretir. Hilbert etkisi genel görelilikte yerçekiminin dinamiğini tarifleyen fonksiyonel işlemdir. metrik işaretiyle, etkinin çekimsel kısmı,

Fizikte Einstein ilişkisi; 1904'te William Sutherland'in, 1905'te Albert Einstein'ın ve 1906'da Marian Smoluchowski'nin Brown hareketi üzerine yaptıkları çalışmalarında bağımsız olarak ortaya koydukları önceden beklenmedik bir bağlantıdır. Denklemin daha genel biçimi:

Kapiller sayısı (Ca), akışkanlar mekaniği disiplininde, bir sıvı ve bir gaz ya da iki karışmayan sıvı arasındaki arayüzde etkili olan viskoz direnç kuvvetleri ile yüzey gerilimi kuvvetlerinin oransal etkisini ifade eden bir boyutsuz niceliktir. Bond sayısı ile beraber bu terim, gözenekli veya granüler ortamlarda, özellikle toprak gibi, bir sıvı cephesinde etkili olan kuvvetlerin tanımlanmasında kullanışlıdır. Kapiller sayısı şu şekilde tanımlanmıştır:

Akışkanlar dinamiğinde, Eötvös sayısı (Eo), diğer adıyla Bond sayısı (Bo), sıvı yüzeyinin hareketinde yerçekimi kuvvetlerinin yüzey gerilimi kuvvetlerine oranını ölçen bir boyutsuz sayıdır. Viskoz sürüklenmenin etkisini gösteren, genellikle olarak ifade edilen Kapiller sayısı ile birlikte, , örneğin toprak gibi, sıvının gözenekli ortam veya granüler ortamlarda hareketini incelemek için kullanılır. Bond sayısı, kabarcıklar veya çevresindeki bir akışkanda hareket eden damlaların şeklini karakterize etmek için Morton sayısı ile birlikte kullanılır. Bu boyutsuz terim, sırasıyla Macar fizikçi Loránd Eötvös (1848–1919) ve İngiliz fizikçi Wilfrid Noel Bond (1897–1937)'un adını taşır. Eötvös sayısı terimi Avrupa'da daha sık kullanılırken, Bond sayısı dünyanın diğer bölgelerinde yaygın olarak kullanılmaktadır.

Hartmann sayısı (Ha), ilk olarak Danimarkalı Julius Hartmann tarafından tanıtılan, elektromanyetik kuvvetin viskoz kuvvete oranıdır. Sıklıkla manyetik alanlar içindeki akışkan akışlarında karşılaşılır. Şu şekilde tanımlanır:

Kapitza sayısı (Ka), ünlü Rus fizikçi Pyotr Kapitsa'nın adını taşıyan boyutsuz bir sayıdır. Kapitsa, ince bir sıvı filminin eğimli yüzeylerden akışını kapsamlı bir şekilde inceleyen ilk kişidir. Yüzey gerilimi kuvvetlerinin atalet kuvvetlerine oranı olarak ifade edilen Kapitza sayısı, düşen sıvı filmlerindeki hidrodinamik dalga rejiminin bir göstergesi olarak işlev görür. Sıvı film davranışı, daha genel bir serbest sınır problemi sınıfının bir alt kümesini temsil eder ve evaporatörler, ısı eşanjörüler, absorpsiyon cihazları, mikroreaktörler, küçük ölçekli elektronik/mikroişlemci soğutma sistemleri, klima ve gaz türbini kanat soğutması gibi geniş bir mühendislik ve teknolojik uygulama yelpazesinde önemlidir.

Laplace sayısı (La), diğer adıyla Suratman sayısı (Su), serbest yüzey akışkanlar dinamiği karakterizasyonunda kullanılan bir boyutsuz sayıdır. Bu sayı, yüzey gerilimi ile akışkan içindeki momentum taşınımı arasındaki oranı temsil eder.

Marangoni sayısı (Ma), yaygın olarak tanımlandığı üzere, Marangoni akışları ile difüzyon taşıma hızını karşılaştıran bir boyutsuz sayıdır. Marangoni etkisi, sıvının yüzey gerilimindeki gradyanlardan kaynaklanan akışıdır. Difüzyon ise yüzey gerilimindeki gradyanı oluşturan maddenin yayılmasıdır. Bu nedenle, Marangoni sayısı akış ve difüzyon zaman ölçeklerini karşılaştıran bir tür Peclet sayısıdır.

Akışkanlar dinamiği alanında, Morton sayısı (Mo), Eötvös sayısı veya Bond sayısı ile birlikte, çevresindeki bir akışkan veya sürekli faz c içinde hareket eden baloncukların veya damlacıkların şeklini belirlemek için kullanılan bir boyutsuz sayıdır. Bu sayı, 1953 yılında W. L. Haberman ile birlikte tanımlayan Rose Morton'dan ismini almıştır.

Akışkanlar mekaniğinde, Rayleigh sayısı (Ra, Lord Rayleigh'e ithafen) bir akışkan için kaldırma kuvveti ilişkili bir boyutsuz sayıdır. Bu sayı, akışkanın akış rejimini karakterize eder: belirli bir alt aralıkta bir değer laminer akışı belirtirken, daha yüksek bir aralıktaki değer türbülanslı akışı belirtir. Belirli bir kritik değerin altında, akışkan hareketi olmaz ve ısı transferi konveksiyon yerine ısı iletimi ile gerçekleşir. Çoğu mühendislik uygulaması için Rayleigh sayısı büyük olup, yaklaşık 106 ile 108 arasında bir değerdedir.

Akışkanlar dinamiğinde, bir akışkanın Schmidt sayısı, momentum difüzivitesi ile kütle difüzyonu oranı olarak tanımlanan bir boyutsuz sayıdır ve eşzamanlı momentum ve kütle difüzyonu konveksiyon süreçlerinin gerçekleştiği akışkan akışlarını karakterize etmek amacıyla kullanılır. Bu sayı, Alman mühendis Ernst Heinrich Wilhelm Schmidt (1892–1975) adına ithaf edilmiştir.

<span class="mw-page-title-main">Weber sayısı</span>

Weber sayısı (We), akışkanlar mekaniği alanında farklı iki akışkan arasındaki ara yüzeylerin bulunduğu akışkan akışlarını analiz ederken sıkça kullanılan bir boyutsuz sayıdır ve özellikle yüksek derecede eğilmiş yüzeylere sahip çok fazlı akışlar için oldukça faydalıdır. Bu sayı, Moritz Weber (1871–1951)'in adıyla anılmaktadır. Bu sayı, akışkanın eylemsizliğinin yüzey gerilimine kıyasla göreceli önemini ölçmek için kullanılan bir parametre olarak düşünülebilir. İnce film akışlarının ve damlacık ile kabarcık oluşumlarının analizinde büyük önem taşır.

Womersley sayısı, biyoakışkan mekaniği ve biyoakışkan dinamiği alanlarında kullanılan bir boyutsuz sayıdır. Bu sayı, pulsatil akış frekansının viskoz etkilerle olan ilişkisini boyutsuz bir biçimde ifade eder. John R. Womersley (1907–1958)'in arterlerdeki kan akışı üzerine yaptığı çalışmalar nedeniyle bu adla anılmaktadır. Womersley sayısı, bir deneyin ölçeklendirilmesinde dinamik benzerlik sağlamak açısından önem taşır. Örneğin, deneysel çalışmalarda damar sisteminin ölçeklendirilmesi bu duruma örnek teşkil eder. Ayrıca, Womersley sayısı, giriş etkilerinin ihmal edilip edilemeyeceğini belirlemek için sınır tabakası kalınlığının tespitinde de önemlidir.