İçeriğe atla

Odak mekanizması

Odak mekanizması, bir depremin, sismik dalgaları oluşturan kaynak bölgedeki deformasyonu tanımlar. Fay ile ilgili bir olay söz konusu olduğunda, kayan fay düzleminin ve kayma vektörünün yönünü ifade eder ve fay düzlemi çözümü olarak da bilinir. Odak mekanizmaları, gözlemlenen sismik dalga biçimlerinin analiziyle tahmin edilen deprem için moment tensörünün çözümünden türetilmiştir. Odak mekanizması, "ilk hareketlerin" modelini, yani ilk gelen P dalgalarının kırılıp kırılmadığını gözlemleyerek elde edilebilir. Bu yöntem, dalga biçimleri dijital olarak kaydedilip analiz edilmeden önce kullanıldı ve bu yöntem, kolay moment tensör çözümü için çok küçük depremler için hala kullanılmaktadır. Odak mekanizmaları artık ağırlıklı olarak kaydedilen dalga biçimlerinin yarı otomatik analizi kullanılarak türetilmektedir.[1]

Moment tensörü çözümleri

Moment tensörü çözümü tipik olarak "plaj topu" diyagramı kullanılarak grafiksel olarak gösterilir. Tek bir fay düzlemi üzerinde tek bir hareket yönüne sahip bir deprem sırasında yayılan enerji paterni, ikili çift olarak modellenebilir ve bu moment tensörü olarak bilinen matematiksel olarak ikinci mertebeden tensörün (gerilim ve şekil değiştirme için olanlara benzer) özel bir durumudur.

Fay hareketinden kaynaklanmayan depremler, oldukça farklı enerji yayılma modellerine sahiptir. Örneğin, bir yeraltı nükleer patlaması durumunda, sismik moment tensörü izotropiktir ve bu fark, bu tür patlamaların sismik tepkilerinden kolayca ayırt edilmesini sağlar. Bu, Kapsamlı Nükleer Deneme Yasağı Antlaşması çerçevesinde depremler ile patlamalar arasında ayrımı izlemenin önemli bir parçasıdır.

Karşılık gelen plaj topu grafikleriyle birlikte fay türleri[2]
Sol-yanal

doğrultu atımlı

Sağ-yanal

doğrultu atımlı

Normal

eğim atımlı

İtme/geri gelme

eğim atımlı

Grafik gösterim ("plaj topu gösterimi")

Bir depremin verileri, bir alt yarımküre stereografik izdüşüm kullanılarak çizilmiştir. Azimut ve kalkış açısı, ayrı bir sismik kaydın konumunu çizmek için kullanılır. Kalkış açısı, deprem odağından çıkarken sismik bir ışının düşeyinden yaptığı açıdır. Bu açılar, kalkış açısı ile odak ve gözlem istasyonu arasındaki mesafe arasındaki ilişkiyi açıklayan standart bir tablo setinden hesaplanır. Geleneksel olarak, dolu semboller, kaydedilen ilk P dalgası hareketinin yukarı (bir sıkıştırıcı dalga), aşağı için içi boş semboller (bir gerilim dalgası) olduğu istasyonlardan gelen verileri çizmek için kullanılır; gelişleri bir anlam elde etmek için çok zayıf olan istasyonlar için noktalar bulunur. hareket Yeterli gözlem varsa, sıkıştırıcıyı çekme gözlemlerinden ayıran iki iyi sınırlandırılmış ortogonal büyük daire çizilebilir ve bunlar düğüm düzlemleridir. Net bir ilk hareketi olmayan istasyonlardan yapılan gözlemler normalde bu düzlemlere yakındır. Geleneksel olarak sıkıştırma kadranları renklidir ve gerilimli sol beyazdır. İki düğüm düzlemi N (nötr) ekseninde kesişir. P ve T eksenleri de sıklıkla çizilir; N ekseni ile bu üç yön, sırasıyla depremle ilişkili maksimum, minimum ve ara ana basınç gerilmelerinin yönleriyle eşleşir. P ekseni beyaz bölümün ortasına, T ekseni ise renkli bölümün ortasına çizilir.

2004 Hint Okyanusu depremi için USGS odak mekanizması

Depremden sorumlu fay düzlemi, düğüm düzlemlerinden birine paralel olacak, diğerine yardımcı düzlem adı verilecek. Düğüm düzlemlerinden hangisinin aslında fay düzlemi olduğunu yalnızca bir odak mekanizmasından belirlemek mümkün değildir. Bunun için belirsizliği ortadan kaldırmak için diğer jeolojik veya jeofizik kanıtlara ihtiyaç vardır. Fayın bir tarafının diğerine göre hareket yönü olan kayma vektörü, N ekseninden 90 derece fay düzlemi içinde yer alır.

Örnek vermek gerekirse, 2004 Hint Okyanusu depreminde, moment tensör çözümü biri 6 derecede kuzeydoğuya, diğeri 84 derecede güneybatıya eğimli iki düğüm düzlemi verir. Bu durumda deprem, düzlemin kuzeydoğuya sığ bir şekilde eğimli olmasıyla güvenle ilişkilendirilebilir, çünkü bu, tarihsel deprem konumları ve levha tektonik modelleri tarafından tanımlandığı gibi Yitim zonu levhasının oryantasyonudur.[3]

Fay düzlemi çözümleri, fay düzleminin hiçbir yüzey ifadesinin bulunmadığı veya fay izinin bir okyanus tarafından kaplandığı derinlikteki sismojenik hacimlerdeki faylanma stilini tanımlamak için kullanışlıdır. Deniz tabanının yayılması hipotezinin başarılı bir testinin en güzel basit örneği, okyanusal dönüşüm fayları[4] boyunca hareket duygusunun, ofset okyanus sırtlarının klasik jeolojik yorumunda beklenenin tersi olduğunun gösterilmesiydi. Bu, okyanus faylarındaki depremlerin fay düzlemi çözümlerinin inşa edilmesiyle yapıldı; bu, faya paralel bir düğüm düzlemi ve deniz tabanında sırtlardan yayılması fikrinin gerektirdiği yönde kayma ile doğrultu atımlı doğaya sahip (şekillere bakın) plaj topu çizimlerini gösterdi.[5]

Fay düzlemi çözümleri, bazı dalan levhalardaki derin deprem bölgelerinin basınç altında, diğerlerinin ise gerilim altında olduğunun keşfedilmesinde kilit rol oynadı.[6][7]

Plaj topu hesap makinesi

Odak Mekanizma Çözümlerini (FMS) hazırlamak için çeşitli programlar mevcuttur. Plaj topu diyagramlarını hazırlamak için MATLAB tabanlı bir araç kutusu olan BBC mevcuttur. Bu yazılım, farklı istasyonlara ulaştıkça ilk hareket polarite verilerini çizer. Sıkıştırma ve genişletme, fare yardımıyla ayrılır. Son diyagram otomatik olarak hazırlanır.[8]

Kaynakça

  1. ^ Sipkin, Stuart A. (1994). "Rapid determination of global moment-tensor solutions". Geophysical Research Letters. 21 (16): 1667-1670. doi:10.1029/94GL01429. 
  2. ^ Yongliang Wang, Yang Ju, Yongming Yang (2018), Adaptive Finite Element-Discrete Element Analysis for Microseismic Modelling of Hydraulic Fracture Propagation of Perforation in Horizontal Well considering Pre-Existing Fractures, 2018, ss. 1-14, doi:10.1155/2018/2748408, ISSN 1070-9622, 16 Ocak 2023 tarihinde kaynağından arşivlendi, erişim tarihi: 16 Ocak 2023  Bilinmeyen parametre |periyodik= görmezden gelindi (yardım)
  3. ^ Sibuet, Jean-Claude; Rangin, Claude; Lepichon, Xavier Le; Singh, Satish; Cattaneo, Antonio; Graindorge, David; Klingelhoefer, Frauke; Lin, Jing-Yi; Malod, Jacques; Maury, Tanguy; Schneider, Jean-Luc; Sultan, Nabil; Umber, Marie; Yamaguchi, Haruka; "Sumatra Aftershocks" team (2007). "26th December 2004 great Sumatra–Andaman earthquake: Co-seismic and post-seismic motions in northern Sumatra" (PDF). Earth and Planetary Science Letters. 263 (1–2): 88-103. Bibcode:2007E&PSL.263...88S. doi:10.1016/j.epsl.2007.09.005. 22 Kasım 2022 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 9 Şubat 2023. 
  4. ^ Wilson, J. Tuzo (1965). "A new class of faults and their bearing on continental drift". Nature. 207 (4995): 343-347. doi:10.1038/207343a0. 
  5. ^ Sykes, Lynn R. (1967). "Mechanism of earthquakes and nature of faulting on the mid-oceanic ridges". Journal of Geophysical Research. 72 (8): 2131-2153. doi:10.1029/JZ072i008p02131. 
  6. ^ Isacks, Bryan; Molnar, Peter (1971). "Distribution of stresses in the descending lithosphere from a global survey of focal-mechanism solutions of mantle earthquakes". Reviews of Geophysics and Space Physics. 9 (1): 103-174. doi:10.1029/RG009i001p00103. 
  7. ^ Vassiliou, Marius S. (1984). "The state of stress in subducting slabs as revealed by earthquakes analysed by moment tensor inversion". Earth and Planetary Science Letters. 69 (1): 195-202. doi:10.1016/0012-821X(84)90083-9. 
  8. ^ Shahzad, Faisal (2006). Software development for fault plane solution and isoseismal map (MSc). Islamabad: Quaid-i-Azam University. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Deprem</span> yer kabuğunda beklenmedik anda ortaya çıkan enerji atımı

Deprem, yer sarsıntısı, seizma veya zelzele, yer kabuğunda beklenmedik bir anda ortaya çıkan enerji sonucunda meydana gelen sismik dalgalanmalar ve bu dalgaların yeryüzünü sarsması olayıdır. Sismik aktivite ile kastedilen, meydana geldiği alandaki depremin frekansı, türü ve büyüklüğüdür. Depremler sismograf ile ölçülür. Bu olayları inceleyen bilim dalına da sismoloji denir. Depremin büyüklüğü Moment magnitüd ölçeği ile belirlenir. Bu ölçeğe göre 3 ve altı büyüklükteki depremler genelde hissedilmezken 7 ve üstü büyüklükteki depremler yıkıcı olabilir. Sarsıntının şiddeti Mercalli şiddet ölçeği ile ölçülür. Depremin meydana geldiği noktanın derinliği de yıkım kuvveti üzerinde etkilidir, bu sebepten yeryüzüne yakın noktalarda gerçekleşen depremler daha çok hasara neden olmaktadır.

<span class="mw-page-title-main">Tsunami</span> doğal ya da yapay sebeplerden dolayı okyanus veya denizde meydana gelen ani kabarma

Tsunami [Japoncada liman dalgası anlamına gelen "津波" (つなみ) sözcüğünden] ya da dev dalga, okyanus ya da denizlerin tabanında oluşan deprem, gök taşı düşmesi, deniz altındaki nükleer patlamalar, yanardağ patlaması ve bunlara bağlı taban çökmesi, zemin kaymaları gibi tektonik olaylar sonucu denize geçen enerji nedeniyle oluşan uzun periyotlu deniz dalgalarıdır. Ayrıca kasırgalar da tsunamiye neden olabilir. Önceleri tsunami dalgalarına gelgit dalgaları da denmiştir. Tsunamilerin %80'i Pasifik Okyanusu'nda gerçekleşir.

<span class="mw-page-title-main">Sismik dalga</span> Dünyanın katmanları boyunca dolaşan sismik, volkanik veya patlayıcı enerji

Sismik dalga, Dünya veya başka gezegen gibi bir cisim içinden geçen akustik enerji dalga'sıdır. Deprem, volkanik patlama, magma hareketinden, büyük heyelan ve alçak frekanslı akustik enerji üreten büyük insan yapımı bir patlama'dan kaynaklanabilir.

<span class="mw-page-title-main">1906 San Francisco depremi</span> 18 Nisan 1906 Çarşamba günü yerel saate göre sabaha karşı 5:12de vuran yüksek şiddetli deprem

1906 San Francisco depremi San Francisco, CA ve Kuzey Kaliforniya'yı 18 Nisan 1906 Çarşamba günü yerel saate göre sabaha karşı 5.12'de vuran yüksek şiddetli depremdir. Depremin büyüklüğü genel olarak 7,9 Mw kabul edilir. Buna karşın depremin büyüklüğü en az 7,7 Mw en fazla 8,25 Mw olarak ileri sürülmüştür. Esas sarsıntı merkezi şehrin 2 mil (3 km) uzağında, denizdeki Mussel Kayalıkları'dır. Bölge; San Andreas Fay Hattı'ndan kaynaklanan bu depremle kuzey-güney doğrultusunda 296 mil (477 km) ikiye ayrılmıştır. Sarsıntı Oregon'dan Los Angeles'a; hatta denizden oldukça uzak olan Nevada'nın merkezine kadar geniş bir alanda hissedilmiştir. Deprem ve sonucunda oluşan büyük yangın, Amerika Birleşik Devletleri tarihinde meydana gelen en kötü doğal afet olarak kabul edilir. Deprem ve bunun sonucunda oluşan yangın sebebiyle ölenlerin sayısının 3.000'den fazla olduğu tahmin edilmiştir. Bu rakam Kaliforniya tarihinde bir doğal afetten dolayı ölen en fazla kişi sayısıdır. Depremin ekonomik etkileri, yakın geçmişte meydana gelen Katrina Kasırgası ile benzerlik göstermektedir.

<span class="mw-page-title-main">1980 Azor Adaları depremi</span>

1980 Azor Adaları depremi, 1 Ocak 1980 günü Azor Adaları'nı vuran bir depremdi. Deprem sonucu 61 kişi öldü, 400'den fazla kişi yaralandı ve Terceira ile São Jorge adalarında ciddi hasar meydana geldi. Richter ölçeğine göre 7.2 büyüklüğünde olan depremde Pico ve Faial adalarında da hasar meydana geldi. Deprem, Azor Adaları'nda meydana gelen diğer depremlerde olduğu gibi bir doğrultu atımlı fayda meydana gelmişti.

<span class="mw-page-title-main">Sismolog</span>

Deprem bilimi uzmanı olarak da bilinen Sismologlar, jeolojik malzemelerde sismik dalgaların oluşumunu ve yayılmasını inceleyen jeofizik konusunda uzmanlaşmış yer bilim adamlarıdır. Bu jeolojik malzemeler, bir laboratuvar örneğinden Dünya'nın tamamına, yüzeyinden çekirdeğine kadar değişebilir.

<span class="mw-page-title-main">Alpin kuşağı</span> dünyanın en uzun dağ sırası

Alpin kuşağı, Avrasya'nın güney kenarı boyunca uzanan bir sıradağ sistemidir. Cava ve Sumatra'dan başlayarak, Himalayalar ve Akdeniz üzerinden Atlas Okyanusu'na doğru uzanan kuşak Alpleri, Karpatları, Anadolu ve İran dağlarını, Hindukuş'u, Himalayaları ve Güneydoğu Asya dağlarını içine alır. Pasifik Deprem Kuşağı'ndan sonra, en büyük depremlerin %17'si ile, Dünya'nın en sismik ikinci bölgesidir.

Artçı şok veya artçı deprem Sismolojide, ana şokla aynı bölgede yer değiştiren kabuğun ana şokun etkilerine uyum sağlaması nedeniyle ortaya çıkan daha büyük bir depremi takip eden daha küçük bir depreme verilen isimdir. Büyük depremler, tutarlı bir düzene göre büyüklüğü ve sıklığı sürekli olarak azalan ve aletle tespit edilebilen yüzlerce ila binlerce artçı şoka neden olabilir. Bazı depremlerde ana kırılma iki veya daha fazla aşamada meydana gelir ve bu da birden fazla ana şoka neden olur. Bunlar ikili depremler olarak bilinir ve genel olarak benzer büyüklüklere ve hemen hemen aynı sismik dalga biçimlerine sahip olmaları nedeniyle artçı depremlerden ayırt edilebilirler.

Sismotektonik bir bölgedeki deprem, tektonizma ve faylar arasındaki ilişkinin çalışmasıdır.

<span class="mw-page-title-main">Deprem odağı</span>

Deprem odağı ya da episantr, bir deprem sonucu yeraltındaki fayın kırıldığı yerin hemen üzerinde, yüzeydeki noktadır. Bu odak veya odak noktası derinliği olarak bilinen bir mesafede, merkez üssü altında doğrudan oluşur. Odak derinliği sismik dalga olgusuna dayanan ölçümlerle hesaplanabilir. Tüm dalga olaylarında olduğu gibi, bu uzun dalga boyu ile dalgaların kaynağının odak derinliğini tam olarak belirlemek zordur. Çok kuvvetli depremler, çok uzun dalga boylarına sahip sismik dalgalar, kendi serbest enerjisinin büyük bir kısmını yayar ve bu nedenle güçlü bir deprem büyük bir kitle enerjinin serbest bırakılmasını sağlar. Bilgisayar, ana şok ve öncü şokların odak noktası ile artçı hareketlerin hangi fay boyunca oluştuğunu üç boyutlu çizim şeklinde verir.

<span class="mw-page-title-main">Düzlem dalga</span>

Fizikte düzlem dalgalar, uzayda herhangi bir yöne dik düzlemler şeklinde hareket eden dalgalardır. Bu dalgalar, hareket ettikleri yöne dik bir kesit boyunca aynı değeri verir. x ekseninde hızında hareket eden bir düzlem dalganın fonksiyonu,

Öncü deprem, daha büyük bir depremden önce meydana gelen ve hem zaman hem de mekan açısından onunla ilişkili olan bir depremdir. Bir depremin öncü, ana şok veya artçı şok olarak adlandırılması ancak tüm depremler dizisi gerçekleştikten sonra mümkündür.

<span class="mw-page-title-main">Hiposantr</span> deprem odak noktası

Hiposantr, odak noktası da denilen deprem enerjisinin açığa çıktığı noktadır. Depremler, yerkürenin en üstünde bulunan tabakadaki kırıkların hareketiyle meydana gelir. Bu kırılmalara ise fay hattı adı verilir. Yani depremler kırıklarda oluşan basınç dengesinin değişmesiyle oluşan sismik dalgalandır. Kısaca, depremler fay hatları arasındaki enerjinin anlık olarak ortaya çıkmasıdır.

Sismolojide, bir deprem yırtılması, yer kabuğundaki bir deprem sırasında meydana gelen kayma derecesidir. Depremler, toprak kaymaları, bir volkandaki magmanın hareketi, yeni bir fayın oluşumu veya en yaygın olarak mevcut bir fayın kaymasını içeren birçok nedenden dolayı meydana gelir.

1905 Tsetserleg depremi, 9 Temmuz 1905'te Moğolistan'ın Khövsgöl Eyaletinin Tsetserleg Sum veya yakınında meydana gelmiştir. Deprem, moment büyüklüğü ölçeğinde 7,9 ile 8,3 olarak tahmin edilmiştir.

1905 Bulnay depremi, 23 Temmuz'da Moğolistan'ın Zavkhan Eyaletinin Asgat Sum veya yakınında meydana gelmiştir. Deprem, moment büyüklüğü ölçeğinde 8,25 ile 8,4 olarak tahmin edilmiştir.

<span class="mw-page-title-main">Yüzey kırılması</span> jeolojik fenomen

Yüzey kırılması, sismolojide, bir fay boyunca bir deprem yırtılması Dünya yüzeyini etkilediğinde zemin yüzeyinin görünür kaymasıdır. Yüzey kırılması, zemin seviyesinde yer değiştirmenin olmadığı gömülü kırılma ile karşı karşıyadır. Bu, yer sarsıntısından kaynaklanan herhangi bir riske ek olarak, aktif olabilecek bir fay kuşağı boyunca inşa edilmiş herhangi bir yapı için büyük bir risktir. Yüzey kırılması, kırılmış bir fayın her iki tarafında dikey veya yatay hareket gerektirir. Yüzey kırılması geniş arazi alanlarını etkileyebilir.

<span class="mw-page-title-main">Plaka içi deprem</span> plaka içinde oluşan deprem

Plaka içi deprem terimi, bir tektonik plakanın iç kısımlarında meydana gelen çeşitli depremleri ifade eder; bu, tektonik bir plakanın sınırında meydana gelen bir levhalar arası depremin tersidir. Plaka içi depremler, özellikle mikro plakalarda meydana geldiğinde genellikle "katman içi depremler" olarak adlandırılır.

Mega bindirmeli depremler, bir tektonik plakanın diğerinin altına doğru zorlandığı yakınsak plaka sınırlarında meydana gelir. Depremler, iki plaka arasındaki teması oluşturan bindirme fayı boyunca yaşanan kaymadan ötürü kaynaklanır. Bu levhalar arası depremler, 9.0'ı geçebilen moment büyüklükleri (Mw) ile gezegenin en güçlü depremleridir. 1900'den bu yana, büyüklüğü 9.0 veya daha büyük olan tüm depremler, mega bindirmeli depremlerdir.

Denizaltı veya su altı depremi, bir su kütlesinin içinde, özellikle de okyanusun dibinde meydana gelen bir depremdir. Tsunamilerin başlıca nedeni bu tarz depremlerdir. Büyüklük, moment büyüklüğü ölçeği kullanılarak bilimsel olarak ölçülebilir ve şiddeti, Mercalli şiddet ölçeği kullanılarak belirlenebilir.