İçeriğe atla

Nucleus solitarius

Nucleus solitarius
Beyin sapı kranial sinirlerin şematize edilmiş hâli. Kırmızı: Motor çekirdekler, Mavi: Duyu çekirdekleri
İnsan embriyosuna ait medulla oblangatanın enine kesitsel görünümü
Latince isimnuclei tractus solitarii
SistemOmurilik soğanı
Tanımlayıcılar
JSTORsolitary-nucleus
Microsoft Academic2910784890 2779929655, 2910784890
MeSHD017552
TA6008
FMA72242

İnsan beyin sapında, (SN) (soliter çekirdek, soliter nükleus, nucleus tractus solitarius) medulla oblongata içine gömülmüş gri madde sütunu oluşturan, tamamen duyusal nöronlardan oluşan bir çekirdektir (sinir hücresi gövdeleri kümeleri). SN'un merkezi boyunca, SN'u innerve eden fasial, glossoparingeal ve vagus sinir liflerine ait olan beyaz bir sinir lifi demeti bulunur. SN, diğer bölgelerin yanı sıra, retiküler formasyon, parasempatik preganglionik nöronlar, hipotalamus ve talamusaotonomik dengenin sağlanmasıyla ilgili bağlantılar gönderir. SN uzunluğu boyunca hücreler kabaca işleve göre düzenlenmiştir; örneğin, tada dahil olan hücreler rostrum (kafaya yakın) kısmında bulunurken, kardiyo-solunum ve gastrointestinal süreçlerden bilgi alan hücreler kaudal (kutuda yakın) kısımda bulunur.[1][2]

Girdiler

  • Chorda tympani (dilin 2/3 ön kısmı), glossofaringeal sinir (arka 1/3) ve vagus siniri (epiglotta küçük alan) ile fasiyal sinirden gelen tat bilgilerini
  • Orta kulaktan duyusal bilgi (glossoparingeal sinirin timpanik pleksusu )
  • Vagus siniri yoluyla glossofaringeal sinir, aortik cisimler ve sinoatriyal düğüm yoluyla karotis cismindeki genel viseral afferent yolun (GVA) kemoreseptörleri ve mekanik reseptörleri
  • Glossopharyngeal ve vagus sinirleri aracılığıyla kalp, akciğerler, hava yolları, gastrointestinal sistem, farinks ve karaciğerde uçları bulunan genel viseral afferent yolun (GVA) kimyasal ve mekanik olarak duyarlı nöronları

SN'u inerve eden nöronlar; gag refleksini, karotid sinüs refleksini, aort refleksini, öksürük refleksini, baroreseptör ve kemoreseptör reflekslerini, mide-bağırsak sistemi hareketlerini, solunum reflekslerini düzenler.

Bağırsak duvarı, akciğerlerin gerilmesi ve mukoza zarlarının kuruluğu hakkında sinyaller SN'a iletir. SN içindeki ilk merkezi nöronlar basit otonom reflekslere katılabilir.

Çıktılar

Soliter nükleustan bilgiler: Hipotalamusun periventriküler çekirdeklerine, amigdalanın santral çekirdeğine, beyin sapındaki parabrakial alan, lokus sereleus, dorsal rapte çekirdeği gibi beynin birçok farklı bölgesine dağılır.[3] SN'den parabrakial alana dağılan lifler ağız boşluğundan ve sindirim sisteminden köken alır.[4][5] SN içerisinde nöroadrenerjik hücre grubu (A2) ve aldosteron duyarlı HSD2 nöronları gibi bazı alt sinir topluluklarının stria terminalis ile bağlantıları vardır.[6][7]

Kaynakça

  1. ^ Neuroanatomy : an atlas of structures, sections, and systems (6. bas.). Lippincott Williams & Wilkins. 2004. ISBN 978-0-7817-4677-9. 
  2. ^ Neuroscience in medicine (3. bas.). Humana Press. ISBN 978-1-60327-455-5. 
  3. ^ Physiology of behavior (10. bas.). Allyn & Bacon. 2010. ISBN 978-0-205-66627-0. 
  4. ^ Karimnamazi (2002). "Oral and gastric input to the parabrachial nucleus of the rat". Brain Research. 957 (2). ss. 193-206. 
  5. ^ Karimnamazi (1998). "Differential projections from gustatory responsive regions of the parabrachial nucleus to the medulla and forebrain". Brain Research. 813 (2). ss. 283-302. 
  6. ^ Geerling (Jul 2006). "Aldosterone-sensitive neurons in the nucleus of the solitary tract: efferent projections". J Comp Neurol. 497 (2). ss. 223-50. 
  7. ^ Shin (Dec 2008). "Inputs to the ventrolateral bed nucleus of the stria terminalis". J Comp Neurol. 511 (5). ss. 628-57. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Beyin</span> vücudumuzun kontrolünü sağlayan sinir sisteminin merkezi beyin

Beyin , sinir sisteminin merkezi olarak hizmet eden bir organıdır. Bütün omurgalı hayvanlar ve çoğu omurgasız hayvan -bazı süngerler, knidliler, tulumlular ve derisi dikenliler gibi omurgasızlar hariç- beyne sahiptir. Baş kısmında; duyma, tatma, görme, denge, koklama gibi duyulara hizmet eden organlara yakın bir noktada bulunan beyin omurgalıların vücudundaki en karmaşık organdır. Normal bir insanda serebral korteksin 15-33 milyar nörondan müteşekkil olduğu tahmin edilmektedir. Her biri birkaç bin nöronla sinaps denen bağlantılar yardımıyla bağlıdır. Bu nöronlar birbirleriyle akson denen uzun protoplazmik lifler yardımıyla iletişim kurar. Aksonlar bilgiyi beynin diğer kısımlarına yahut vücudun spesifik alıcı hücrelerine taşır.

Retina (latince:rete) ya da ağkatman çoğu omurgalı ve bazı yumuşakçaların gözünün en içindeki görmeyi sağlayan ışığa ve renge duyarlı hücrelerin bulunduğu göz doku tabakasıdır. Gözün optiği, retinadaki görsel dünyanın odaklanmış iki boyutlu bir görüntü oluşturur ve bu görüntüyü beyne elektriksel sinir uyarılarına çevirerek görsel algı oluşturur. Retina, bir kameradaki film veya görüntü sensörü 'ne benzer bir iş yapar.

<span class="mw-page-title-main">Omurilik soğanı</span> Soluk alış veriş hızını ve kalp ritmini düzenler.

Omurilik soğanı veya medulla oblongata, ya da basitçe medulla beyin sapının ayrılmaz bir parçasıdır. Beyin sapının alt segmenti olarak konumlanmış olup, beyinciğin önünde ve biraz altında yer alır. Koni şeklindeki bu nöron kümesi, çeşitli otonom (istemsiz) bedensel işlevler için çok önemlidir. Bunlar kusma, hapşırma ve daha fazlası gibi refleks eylemleri içerir.

<span class="mw-page-title-main">Sinir hücresi</span> sinapslar aracılığıyla iletişim kuran ve elektrik ile uyarılabilen hücre

Sinir hücresi ya da nöron sinir sisteminin temel fonksiyonel birimidir. Başlıca işlevi bilgi transferini gerçekleştirmektir. İnsan sinir sisteminde yaklaşık olarak 100 milyar nöron olduğu tahmin edilmektedir. Normal bir sinir hücresi 50.000'den 250.000'e kadar başka nöronlarla bağlantılıdır. Yaptıkları özelleşmiş işlere bağlı olarak farklı şekillerde ve çeşitlerde olabilirler. Nöronların büyük çoğunluğu dört farklı yapıya sahiptir: Soma, dendritler, akson ve terminal butonlar. Soma bölgesinde çekirdek (nucleus) ve hücrenin yaşamsal işlevlerini sağlayan mekanizma bulunur. Dendiritler ise isimlerini Yunanca bir sözcük olan dendrondan almışlardır. Bu şekilde isimlendirilmelerinin sebebi şekillerinin bir ağaca benzemesidir. Dendiritler nöral iletişimin önemli alıcılarıdır. Bir nörondan diğerine geçen mesajlar, mesajı yollayan hücrenin terminal butonlarıyla mesajı alan hücrenin dendirit membranı ya da soma bölümü arasındaki birleşme yerleri olan sinapslar aracılığıyla iletilir/transfer edilir. Sinapslar işlevlerinden yola çıkılarak isimlerini Yunancada "bir araya gelmek" anlamındaki sunaptein sözcüğünden almışlardır. Sinapstaki iletişim terminal butondan öteki hücrenin membranına kadar olmak üzere tek yönlü bir şekilde gerçekleşir. Nöronun bir diğer bölümü olan akson, çoğu kez miyelin kılıfı ile kaplı uzun ve ince bir tüp şeklindedir. Aksonun temel işlevi bilgiyi hücre gövdesinden terminal butonlara taşımaktır. Aksonun taşıdığı bu temel mesaj aksiyon potansiyeli olarak adlandırılır. Aksiyon potansiyeli, kısa bir nabız atışına benzeyen elektriksel/kimyasal bir olaydır. Bütün aksonlardaki aksiyon potansiyeli her zaman aynı ölçüde ve hızdadır. Aksiyon potansiyeli aksonun dallarına ulaştığında bölünmesine rağmen ölçüsünü kaybetmez. Başka bir deyişle her akson dalı tam gücüyle bir aksiyon potansiyeli alır. Nöronlar aksonların ve dendiritlerin somadan çıkışlarına göre üçe ayrılır. Bunlardan multipolar nöron merkezi sinir sisteminde en çok bulunan bilindik nöron tipidir. Bu tip nöronlar sadece bir akson çıkışına sahipken çok sayıda dendirite sahiptir. Bipolar nöronlar bir akson ve bir dendirit ağacına sahiptir. Duyusal nöronlar genellikle bipolar nöronlardır. Bipolar nöronların dendiritleri duyusal verileri merkezi sinir sistemine iletirler. Diğer tip sinir hücreleri ise unipolar nöronlardır. Bu nöronların hücre gövdesinden çıkan ve kısa mesafede ayrılan tek bir sapı vardır. Unipolar nöronlar da bipolar nöronların yaptığı gibi duyusal verileri merkezi sinir sistemine taşımakla görevlidir. Terminal butonlar aksonların ince dallarının ucunda bulunan küçük yumrulardır. Terminal butonlar bir aksiyon potansiyeli onlara ulaştığında, nörotransmitter adı verilen kimyasalları salıverir. Nörotransmitterler alıcı hücreyi uyarır (excitation) veya engeller (inhibition). Bu şekilde diğer hücrenin aksonunda bir aksiyon potansiyeli oluşup oluşmayacağını belirler.

<span class="mw-page-title-main">İnsan beyni</span> insan sinir sisteminin ana organı

İnsan beyni, insan sinir sisteminin merkezi organıdır ve omurilikle birlikte merkezi sinir sistemini oluşturur.

<span class="mw-page-title-main">Nörobilim</span> sinir sistemini inceleyen bilim dalı

Nörobilim, sinir sistemini inceleyen disiplinlerarası bir bilim dalıdır. Nöronların ve nöral devrelerin temel özelliklerini anlamayı hedefleyen bu bilim dalı, bu amaçla fizyoloji, anatomi, moleküler biyoloji, gelişim biyolojisi, sitoloji, matematiksel modelleme ve psikolojiyi birleştirir. Öğrenme, bellek, davranış, algı ve bilincin biyolojik temelinin anlaşılması Eric Kandel tarafından biyolojik bilimlerin "nihai zorluğu" olarak tanımlanmıştır.

Beyin-bilgisayar arayüzü veya zihin-makine arayüzü veya beyin-makine arayüzü, beyin ile dış bir cihaz arasındaki doğrudan iletişim yoludur. Beyin-bilgisayar arayüzü genellikle insanoğlunun bilişsel veya duyusal motor fonksiyonlarına yardımcı olmak veya onları tamir etmek için kullanılır.

<span class="mw-page-title-main">Sinir</span> periferik sinir sistemindeki kapalı, kablo benzeri akson demeti

Sinir, çevresel sinir sistemindeki kapalı, kablo benzeri sinir lifleri demetidir.

<span class="mw-page-title-main">Purkinje hücreleri</span>

Purkinje hücreleri ya da Purkinje nöronları beyincikte yer alan bir sınıf Gabaerjik nöronlar. Çek anatomist Jan Evangelista Purkyně'nin 1839 yılındaki keşfi sayesinde kaşifinin ismini almıştır.

<span class="mw-page-title-main">Nucleus ambiguus</span> kranial sinir çekirdekleri

Nucleus ambiguus, beyin sapında retükler formasyonun içerisine yerleşen, büyük motor nöronlardan oluşan ve Jacob Clarke tarafından tanımlanmış bir çekirdektir. Nucleus ambiguusu yumuşak damağın düz kaslarını, farinksi, yutma ve konuşma esnasında kullanılan kasları kontrol edenler motor sinirlerin gövdeleri oluşturur. Kalbe giden parasempatik postglionik nöronların bağlantı kurduğu parasempatik pre-ganglionik sinirler de burada bulunur.

<span class="mw-page-title-main">Nucleus salivatorius</span> Kranial sinir çekirdekleri

Salivatuar çekirdekler 2 ayrı çekirdekten oluşur. Bunlar superior salivatuar çekirdek ve inferior salivatuar çekirdektir Salivatuar çekirdeklerin görevi tükürük bezlerini uyarmaktır. Beyin sapında tegmentum içerisinde yer alır.

<span class="mw-page-title-main">Vestibülokoklear sinir</span> kraniyal sinirler

Vestibülokohlear sinir sekizinci kranial sinir olarak bilinir ve iç kulaktan aldığı işitme ve denge ile ilgili bilgileri beyine aktarır.

<span class="mw-page-title-main">Glossofaringeal sinir</span> 9. kraniyal sinir, afferent duyusal ve efferent motor bilgi taşıyan karışık sinir

Glossofaringeal sinir 9. kranial sinirdir. Afferent duyu ve efferent motor nöronlar içeren karma bir sinirdir. üst medulla oblangatadan, vagus sinirinin hemen önünden çıkar. Glossofaringeal sinirin motor dalları embriyonik dönemdeki medulla oblangatanın tabanından, duyu dalları ise kranial nöral katlantıdan köken alır.

<span class="mw-page-title-main">Hipoglossal sinir</span> kraniyal sinir

Hipoglossal sinir 12. kraniyal sinirdir. Vagus sinirinin uyardığı palatoglossus kası hariç dilin tüm intrinsik ve ekstrinsik kaslarını innerve eder. Saf motor nöronlardan oluşan bir sinirdir. Beyin sapında hipoglossal sinir çekirdeğinden çıkan lifler aşağı oksipital kemiğin hipoglossal kanalına doğru ilerler. Bu kanaldan geçerek boynun önünden yukarı dil altına doğru yönlenir. Dilin kasları içerisinde terminal dallarını verir.

<span class="mw-page-title-main">Aksesuar sinir</span> kraniyal sinir

Aksesuar sinir, sternocleidomastoid ve trapezius kaslarını uyaran sinir. Kraniyal sinirler içerisinde 11. kranial sinir olarak tanımlanır. Sternocleidomastoid (SCM) kası kafanın karşı ve aşağı doğru döndürülmesini sağlarken, trapezius kası ise omuz ve skapula hareketlerinden sorumludur.

<span class="mw-page-title-main">Ara sinir</span> Fasiyal sinirin bir dalı

Ara sinir, fasiyal sinirin bir dalı olup fasiyal sinirinin motor komponenti ile vestibulokoklear sinir arasında yer alır.Fasiyal sinirin duyusal ve parasempatik liflerini içerir. Fasiyal kanala ulaştığında, genikulat gangliondaki fasiyal sinirin motor kökü ile birleşir. Alex Alfieri, ara sinirin fasiyal sinirin bir parçası değil, ayrı bir kraniyal sinir olarak değerlendirilmesi gerektiğini öne sürmektedir.

<span class="mw-page-title-main">Substantia nigra</span>

Substantia nigra (SN) ya da Kara madde, orta beyinde yer alan ve ödül ve harekette önemli rol oynayan bir nucleus yapısıdır. Substantia nigra Latince "siyah madde" anlamına gelir ve dopaminerjik nöronlardaki yüksek nöromelanin seviyeleri nedeniyle substantia nigra bölgesi komşu alanlardan daha koyu görünür. Substantia nigra'dan putamen'e uzanan bağlantılara nigrostriatal yolak adı verilir. Bu yolak Parkinson hastalığı'nda görülen hareket bozukluklarında önemli rol oynar. Ayrıca pars kompakta denilen bölümündeki dopaminerjik nöron kaybı da Parkinson hastalığına önder olur. Dopaminerjik yolaklar teşkil etmesi açısından önemli bir ruhsal ve bilişsel kontrol yapısıdır.

Beynin evrimi sürecinde etkili olan ilkelerle ilgili belirsizlikler günümüzde hala çözülememiştir. Beyin-vücut oranı allometrik olarak ölçeklenir. Küçük vücutlu memeliler vücutlarına kıyasla nispeten büyük beyinlere sahipken, büyük memeliler daha küçük beyin-vücut oranlarına sahiptir. Primatların beyin ağırlıklarının vücut ağırlıklarına oranları, primat türünün beyin gücünü yönelik fikir verebilmektedir. İnsanlarda bu oran diğer primat türlerine göre çok daha yüksektir, bu da insanların beyin kitle indeksinin diğer primatlara göre daha yüksek olduğunu gösterir.

Sinir sistemlerinin evrimi, hayvanlarda sinir sistemlerinin ilk gelişimine kadar uzanır. Nöronlar, hareketli tek hücreli ve kolonyal ökaryotlarda bulunan aksiyon potansiyellerinin mekanizmasını uyarlayarak çok hücreli hayvanlarda özel elektrik sinyal hücreleri olarak geliştirildi. Karmaşık protozoalarda bulunanlar gibi birçok ilkel sistem, hareketlilik ve hayatta kalmak için gerekli diğer yönler için elektriksel olmayan sinyalleme kullanır. Veriler, mesajlaşma için kimyasal bir gradyan kullanan bu sistemlerin bugün bilinen elektrik sinyal hücrelerine dönüştüğünü gösteriyor.

<span class="mw-page-title-main">Uyaran (fizyoloji)</span> fizyolojide, iç veya dış çevrede tespit edilebilir bir değişiklik

Fizyolojide uyaran, bir organizmanın iç veya dış çevresinin fiziksel veya kimyasal yapısında tespit edilebilir bir değişikliktir. Bir organizmanın veya organın uygun bir tepki verebilmesi için dış uyaranları tespit etme yeteneğine duyarlılık (uyarılabilirlik) denir. Duyusal reseptörler, deride bulunan dokunma reseptörleri veya gözdeki ışık reseptörlerinde olduğu gibi vücudun dışından ve kemoreseptörler ve mekanoreseptörlerde olduğu gibi vücudun içinden bilgi alabilir. Bir uyaran bir duyusal reseptör tarafından algılandığında, uyaran transdüksiyonu yoluyla bir refleks ortaya çıkarabilir. Bir iç uyaran genellikle homeostatik kontrol sisteminin ilk bileşenidir. Dış uyaranlar, savaş ya da kaç yanıtında olduğu gibi vücutta sistemik yanıtlar üretebilir. Bir uyaranın yüksek olasılıkla algılanabilmesi için güç seviyesinin mutlak eşiği aşması gerekir; eğer bir sinyal eşiğe ulaşırsa, bilgi merkezi sinir sistemine (MSS) iletilir, burada entegre edilir ve nasıl tepki verileceğine dair bir karar verilir. Uyaranlar genellikle vücudun tepki vermesine neden olsa da, bir sinyalin bir tepkiye neden olup olmayacağını nihai olarak belirleyen MSS'dir.