İçeriğe atla

Norton teoremi

Norton teoremi, elektrik devrelerinin çözümlenmesinin kolaylaştırılması için kullanılan teorem ve yöntemdir. Bu yöntem sayesinde karmaşık elektrik devreler oluşturulan basit eşdeğer devre üzerinden kolayca çözülebilir.

Norton Teoremi, benzer bir yöntem olan Thevenin teoreminin uzantısıdır. Teorem 1926 yılında birbirinden bağımsız olarak; Siemens firmasından Hans Ferdinand Mayer (1895-1980) ve Bell Laboratuvarları'dan Edward Lawry Norton (1898-1983) tarafından geliştirilmiştir. Mayer konu ile ilgili çalışmasını yayımlamış, Norton'un çalışması ise firma içi teknik rapor olarak kalmıştır.

Doğrusal bir devre, herhangi iki noktasına göre, bir akım kaynağı ve buna paralel bir direnç haline getirilebilir.

Bunun için;

  1. Herhangi iki noktadan uçları kısa devre edildiğinde geçen akım kaynak akımıdır.
  2. Gerilim kaynağı kısa devre edildiğinde, iki nokta arasındaki direnç eşdeğer dirençtir.

Kısaca Thevenin teoreminin kaynak dönüşümü yapılmış hali olarak tanımlanabilir.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektronik devre elemanları</span> elektronik devreyi meydana getiren ögeler

Elektronik devre elemanları, elektrik devresinin çalışabilmesi için kullanılan parçalara denir. Aktif ve pasif devre elemanları olarak iki gruba ayrılır.

<span class="mw-page-title-main">Kondansatör</span> Ani yük boşalması amacıyla kullanılan devre elemanı

Kondansatör ya da sığaç veya yoğunlaç, elektronların kutuplanıp elektriksel yükü elektrik alanın içerisinde depolayabilme özelliklerinden faydalanılarak bir yalıtkan malzemenin iki metal tabaka arasına yerleştirilmesiyle oluşturulan temel elektrik ve elektronik devre elemanı. Piyasada kapasite, kapasitör, sığaç gibi isimlerle anılan kondansatörler, 18. yüzyılda icat edilip geliştirilmeye başlanmış ve günümüzde teknolojinin ilerlemesinde büyük önemi olan elektrik-elektronik dallarının en vazgeçilmez unsurlarından biri olmuştur. Elektrik yükü depolama, reaktif güç kontrolü, bilgi kaybı engelleme, AC/DC arasında dönüşüm yapmada kullanılır ve tüm entegre elektronik devrelerin vazgeçilmez elemanıdır. Kondansatörlerin karakteristikleri olarak;

<span class="mw-page-title-main">Amper</span> elektrikte akım şiddeti birimi

Amper, elektrikte akım şiddeti birimidir. Birim zamanda geçen elektrik yükü miktarına elektrik akımının şiddeti denir. Bir iletkenin belli bir kesitinden saniyede bir Coulomb elektrik yükü geçerse, akım şiddeti 1 A olur.

<span class="mw-page-title-main">Ohm kanunu</span> iki nokta arasındaki iletken üzerinden geçen akımın, potansiyel farkla doğru; iki nokta arasındaki dirençle ters orantılı olması

Ohm yasası, bir elektrik devresinde iki nokta arasındaki iletken üzerinden geçen akım, potansiyel farkla doğru; iki nokta arasındaki dirençle ters orantılıdır.

<span class="mw-page-title-main">Ohm</span> SI elektrik direnci birimi

Ohm, adını Alman fizikçi Georg Ohm'dan alan, bir iletkenden geçen elektrik akımına karşı iletkenin gösterdiği direncin birimidir.

<span class="mw-page-title-main">Volt</span> elektrikte kullanılan potansiyel farkı (gerilim) birimi

Volt, elektrikte kullanılan potansiyel farkı (gerilim) birimi. Elektromotor kuvvet birimi de volttur. Bir ohm'luk bir direnç üzerinden, bir amper'lik elektrik akımı geçmesi halinde direncin iki ucu arasındaki gerilim bir volttur.

<span class="mw-page-title-main">Transformatör</span> Elektrik-elektronik devre elemanı

Transformatör ya da kısa adıyla trafo iki veya daha fazla elektrik devresini elektromanyetik indüksiyonla birbirine bağlayan bir elektrik aletidir. Bir elektrik devresinden diğer elektrik devresine, enerjiyi elektromanyetik alan aracılığıyla nakletmektedir. Transformatörler elektrik enerjisinin belirli gücünde gerilim ve akım değerlerinde istenilen değişimi yapan makinelerdir. Transformatör, elektrik enerjisini bir elektrik devresinden başka bir devreye veya birden fazla devreye aktaran bileşendir. Transformatörün herhangi bir bobinindeki değişen akım, transformatörün çekirdeğinde değişken bir manyetik akı üretmektedir. Oluşan akım, aynı çekirdek etrafına sarılmış diğer bobinler boyunca değişen bir elektromotor kuvveti indüklemektedir. Elektrik enerjisi, iki devre arasında metalik (iletken) bir bağlantı olmadan ayrı bobinler arasında aktarılabilmektedir.

Devre analizi bir elektrik devresinde bulunan bütün düğüm voltajlarını ve kollardaki akımları bulmak için tercih edilen bir yöntemdir. Bu devre analizi terimi lineer devre analizi anlamındaydı. Bununla birlikte lineer olmayan devreler de analiz edilirdi. Dirençli devreler normalde tek bir kaynağa bağlıdır ve direçler basit teknikler kullanılarak analiz edilebilir, bununla beraber dirençli devre analizi terimi bunun yerine kullanılır. Dirençli devre analizi terimini açıklamak için yanıltıcı olan devre analizi terimi de kullanıldı. Lineer DC devreleri bağımsız voltaj ve akım kaynakları, bağımlı akım ve voltaj kaynakları ve lineer dirençler içerir. Lineer AC devreleri de en az bir lineer diferansiyel eleman, ayrıca en az bir AC kaynak içerir. Eğer bir devrede kondansatör ve bobin yoksa DC devre analiz teknikleri uygulanabilir. Eğer devrede bir veya daha fazla lineer diferansiyel eleman ve bir AC kaynak varsa AC devre analiz teknikleri uygulanmalıdır.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

Thévenin teoremi, bir elektrik devresinde gerekli dönüşümler yapıldıktan sonra, devrenin bir gerilim kaynağı ile ona seri bağlı bir direnç ile gösterilmesidir. Elde edilen devreye Thevenin eşdeğeri denir. Gerilim kaynakları kısa devre, akım kaynakları ise açık devre yapılarak Thevenin eşdeğer direnci bulunur. Burada amaç karmaşık olan devreyi basitleştirmek, devreyi daha kolay değerlendirmektir.

<span class="mw-page-title-main">Gauss yasası</span>

Fizikte Gauss'un akı teoremi olarak da bilinen Gauss yasası, elektrik yükünün ortaya çıkan elektrik alanına dağılımına ilişkilendiren matematiksel bir yasadır. Söz konusu yüzey küresel yüzey gibi bir hacmi çevreleyen kapalı bir yüzey olabilir.

<span class="mw-page-title-main">Topraklama</span>

Topraklama, elektrikli cihazların herhangi bir elektrik kaçağı tehlikesine karşı gövdelerinin bir iletkenle toprağa gömülü vaziyetteki "topraklama" sistemine bağlanması yöntemi. Böylece cihazda elektrik kaçağı varsa, dokunduğumuzda elektrik akımı bizim üzerimizden değil, direnci daha az olan toprak hattı üzerinden geçer ve çarpılma tehlikesi ortadan kalkmış olur.

<span class="mw-page-title-main">Devre teorisi</span> elektrik ağlarının/devrelerinin davranışını açıklayan bilimsel teori

Devre teorisi, elektrik devrelerini analiz etmek ve tasarlamak için mühendislikte kullanılan güçlü bir matematiksel teoridir. Devrelerin çalışma şekillerini incelerken ve devre çözümleri yaparken devre teorisi kullanılır. Büyük ölçüde haberleşme uygulamaları için geliştirilmiştir.

<span class="mw-page-title-main">Ampermetre</span> elektrik akımının şiddetini ölçen alet

Ampermetre, bir elektrik devresinden geçen elektrik akımının şiddetini ölçen alet. Gösterge açısından, soldan sıfırlı ve orta sıfırlı olmak üzere başlıca iki tür ampermetre vardır. Soldan sıfırlı ampermetre sadece çıkışı gösterdiği için yükmetre olarak da bilinir.

Elektrik mühendisliğinde, düğüm analizi, düğüm-voltaj analizi veya kol akımlar metodu bir elektrik devresinde kolların birbirine bağlandığı düğümler arasındaki gerilimleri belirleyen bir yöntemdir. Bir devrede her biri birbirine bağlı olan herhangi bir noktadaki akım veya gerilimleri çözmek için Kirchhoff kanunları kullanılır.
Bu, çoğu farklı devre elemanlarını modellemede çok kullanışlı bir yöntemdir. işlemsel yükselteçler gibi aktif devre elemanları bu analize eklenebilir. Bu elemanlar basit veya istenildiği kadar karmaşık olabilir. Örneğin; Farklı sayıda transistör modelleri düğüm analizinde kullanılabilir. Elemanların sadece lineer olması yeterlidir.

Empedans uygunluğu elektronikte maksimum güç transferi için gereken kaynak ve yük empedansları arsındaki ilişkidir. Fizikte hemen hemen daima üretilen gücün yüke en yüksek verim ile aktarılması yani maksimum güç transferi yapılması hedeflenir. Elektronik devrelerde maksimum güç transferi için, yük empedansı kaynağa göre ayarlanır.

Ölçü aleti, bilim ve teknolojide çeşitli nicelikleri ölçmek için kullanılan alet ve araçlara verilen genel bir addır.

Kısa devre bir elektrik veya elektronik devrede bir hata sonucu direncin aşırı düşük olması olayıdır. Bu durumda devre aşırı akım çeker ve şayet koruma devresi yoksa, kaynağın arızalanması, aşırı sıcaklık ve yangın tehlikesi oluşur.

Eğer bir elektrik devresi iyi tanımlı çıkış terminaline sahipse, devreye bağlanan bu terminal yüktür.

<span class="mw-page-title-main">Léon Charles Thévenin</span> Fransız mühendis (1857-1926)

Léon Charles Thévenin, Fransız telgraf mühendisi. Ohm kanununu karmaşık devrelerin analizi için genişleterek Thévenin teoremini ortaya koymuştur.