İçeriğe atla

Newton'un beşiği

Hareket halindeki bir Newton'un beşiğini gösteren bir animasyon. Aynı hizada ve bir sarkaçta yer alan beş toptan meydana gelen beşikte, ilk top havaya kaldırılmasıyla yüklendiği enerji sonucu ikinci topa değer ve momentum transferiyle ilk topun momentumu, değdiği ikinci topa geçer. Bu şekilde momentum, en son topa kadar geçer. Son top, momentum transferi sonucu havaya kalkar ve kendisinden bir öncekine çarpar. Böylece aynı işlem ters yönden başlar.

Newton'un beşiği ya da Newton topları, adını Isaac Newton'dan alan, momentumun korunumu yasasının incelendiği ve basit sarkaçların yan yana bağlanması ile oluşan çoklu sarkaçtır.

Animasyonlu resimde de göründüğü üzere, tipik bir Newton'un beşiği, basit bir fizik kanununa göre çalışmaktadır. Toplar, tek bir çizgide hareket ederler. Aynı hizada ve bir sarkaçta yer alan birkaç toptan meydana gelen beşikte, bir top kaldırıldığında topa bir enerji yüklenir. Kaldırılan top, diğer topa değeceği sırada bu enerji, kinetik enerjiye dönüşür. Birinci top, ikinci topa değdiğinde momentumu bu topa aktarır. Bu şekilde en son topa kadar aktarım sürer. Son top aldığı momentum transferi sonucu havaya kalkar ve aynı şekilde oluşan momentum transferi, bu defa sondan başlayarak ilk topa doğru gider.

Hareketi

Eğer bir bilye çekilip bırakılırsa düşer ve diğer bilyelere vurduğunda tamamen durur. Dizinin zıt yönündeki son bilye ise ilk çarpan topun hızını alır ve ilk topun izleyeceği şekilde bir kavisle sallanır. Ortadaki bilyeler sabit kalır, hatta ortadaki toplar sabitlense bile beşik çalışmaya devam eder. Bu da sezgilere aykırıdır çünkü hareket etmeksizin hareket iletilmiş olur. İlk defa gözlemleyen bir kişi bunu görsel olarak ilgi çekici ve sezgilere aykırı bulabilir. Eğer birisi bir insan kuyruğunun sonundan ileriye doğru ittirirse, sondaki insanın kinetik enerjiye maruz kalması yerine bütün insanların ileriye hareketleneceğini düşünür. Aslında meydana gelen şey, ilk darbeden oluşan şokun diğer bilyelerin içinden yayılmasıdır. Otobüs kuyruğundaki insanların aksine çelik gibi sert maddeler bu iletimde gayet başarılıdır. Şok dalgası bir vasıtanın içerisinde ses hızıyla hareket eder. Sesin çelik içindeki hızı (ortalama 4699 m/s) havadaki hızından daha yüksektir. İnsan algısı için birkaç santimetre hareket etme süresi çok küçüktür, benzer bir durum şok dalgası bilyelerin içinden geçerken bilyelerde meydana gelen fiziksel bozulmalarda da gözlemlenebilir. Gerçek dünyada bu işlemlerin hiçbiri mükemmel verimlilikte değildir. Kuvvet; asılı tellerde, havanın sürtünmesinde ve ses oluşumunda kayıplar verir. Sonuncusu apaçıktır ve bilyelerin çıtlama sesleri işitilir. Salınımın sonlarına doğru ortadaki toplar bile basit bir miktar hareket sergiler.

Bir diğer ayrıntı ise, aynı anda birden fazla bilyeyi hareket ettirmektir. İki bilye ile zıt yönde tam iki bilye sıçrar ve geri gelir. Gözle görülür şekilde simetrik olmasına karşın, zıt yöndeki tek bir bilyenin 2 kat daha hızlı gitmemesinin sebebi momentumun ve enerjinin aynı anda korunumudur.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Enerji</span> bir sistemin iş yapabilme yeteneğinin ölçüsü

Fizikte enerji, bir cisime veya fiziksel bir sisteme aktarılan, işin performansında ve ısı ve ışık biçiminde tanınabilen niceliksel özelliktir. Enerji korunan bir miktardır; Enerjinin korunumu yasası, enerjinin istenen biçime dönüştürülebileceğini ancak yaratılamayacağını veya yok edilemeyeceğini belirtir. Uluslararası Birimler Sisteminde (SI) enerjinin ölçü birimi joule'dür (J).

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Newton'un hareket yasaları</span> Bilimsel Yasalar

Newton'un hareket yasaları, bir cisim üzerine etki eden kuvvetler ve cismin yaptığı hareket arasındaki ilişkileri ortaya koyan üç yasadır. İlk kez Isaac Newton tarafından 5 Temmuz 1687 tarihinde yayımlanan Philosophiae Naturalis Principia Mathematica adlı çalışmada ortaya konmuştur. Bu yasalar klasik mekaniğin temelini oluşturmuş, bizzat Newton tarafından fiziksel nesnelerin hareketleri ile ilgili birçok olayın açıklanmasında kullanılmıştır. Newton, çalışmasının üçüncü bölümünde, bu hareket yasalarını ve yine kendi bulduğu evrensel kütleçekim yasasını kullanarak Kepler'in gezegensel hareket yasalarının elde edilebileceğini göstermiştir.

1. Yasa
Eylemsiz referans sistemi adı verilen öyle referans sistemleri seçebiliriz ki, bu sistemde bulunan bir parçacık üzerine bir net kuvvet etki etmiyorsa cismin hızında herhangi bir değişiklik olmaz. Bu yasa genellikle şu şekilde basitleştirilir: “Bir cisim üzerine dengelenmemiş bir dış kuvvet etki etmedikçe, cisim hareket durumunu korur.”
2. Yasa
Eylemsiz bir referans sisteminde, bir parçacık üzerindeki net kuvvet onun çizgisel momentumunun zaman ile değişimi ile orantılıdır:
<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

Mekanik denge bir katı cisim için cisme etkiyen bileşke kuvvet vektörünün ve bileşke moment vektörünün sıfır olmasıdır. Katı cisim deforme olmadığından cisme etkiyen kuvvetlerin ve momentlerin net olarak sıfır olması Newtonun ikinci hareket yasasına dayanarak cismin doğrusal ve açısal ivmesinin sıfır olması olarak değiştirilebilir.Bu tanıma göre havada sabit hızda yol alan bir uçak veya sabit eksende sabit açisal hızla dönen bir topaç dengededir.

<span class="mw-page-title-main">Aerodinamik</span> Fizik terimi ve bilim dalı

Aerodinamik, hareket eden katı kütlelerin havayla etkileşimlerini inceleyen bilim dalıdır. Aerodinamik sözcüğü Yunancadan gelmiş olup bu bilim dalı havanın hareketi ile ilgilidir. Parçalı olarak katı bir cisim ile irtibata geçmiş olması, havanın hareketi ve uçağın kanadı gibi, buna örnek olarak gösterilebilir. Aerodinamik akışkan dinamiği ve gaz dinamiğinin bir alt dalıdır ve aerodinamiğin birçok bakış açısı, teorisi bu alanlarda ortaktır. Aerodinamik genellikle gaz dinamiği için kullanılır; gaz dinamiğinin aerodinamikten farkı, tüm gazlar için çalışması ve aerodinamik gibi yalnızca hava ile sınırlanmamış olmasıdır.

<span class="mw-page-title-main">Tork</span> bir kuvvetin nesnenin ekseninde, dayanak noktasında ya da çevresinde dönme eğilimi

Tork, kuvvet momenti ya da dönme momenti, bir cismin bir eksen etrafındaki dönme, bükülme veya burulma eğilimini dönme ekseni merkezine indirgeyerek ölçen fiziksel büyüklüktür. Torkun büyüklüğü moment kolu uzunluğuna, uygulanan kuvvete ve moment kolu ile kuvvet vektörü arasındaki açıya bağlıdır.

<span class="mw-page-title-main">Enerjinin korunumu</span>

Enerjinin korunumu yasası, yalıtılmış bir sistemdeki toplam enerjinin değişmeyeceğini söyler. Enerji ne yok edilebilir ne de yoktan var edilebilir, ama enerji türü değişebilir; örneğin, dinamitin patlamasıyla kimyasal enerji kinetik enerjiye dönüşebilir.

Salınım, merkezi bir değere ilişkin veya iki veya daha fazla farklı durum arasındaki bazı ölçümlerin genellikle zamanla tekrarlayan veya periyodik değişimidir. Sarkaç ve alternatif akım bilinen salınım örnekleridir. Salınımlar fizikte atomlar arasındakiler gibi karmaşık etkileşimlere yaklaşmak için kullanılabilir.

<span class="mw-page-title-main">Mekanik enerji</span>

Fizikte mekanik enerji, mekanik bir sistemin bileşenlerinde yer alan potansiyel ve kinetik enerjinin toplamı olarak ifade edilir. Bu enerji cismin hareketi ve konumu ile ilişkilidir. İdeal bir ortamda eğer bir cisim, yalnızca yer çekimi kuvveti gibi konservatif bir kuvvete tabi ise enerjinin korunumu yasası mekanik enerjinin sabit olduğunu söyler. Bir cisim konservatif net kuvvetin tersi yönünde hareket ederse potansiyel enerji artacak ve eğer sürati de değiştiyse kinetik enerjisi de değişecektir. Tüm gerçek sistemlerde sürtünme kuvveti gibi konservatif olmayan kuvvetler bulunacaktır, fakat bu değerler çoğu zaman ihmal edilebilir ve mekanik enerjinin yine de sabit olduğu söylenebilir. Esnek çarpışmalarda mekanik enerji korunurken esnek olmayan çarpışmalarda bir kısmı ısıya dönüşür. Kayıp mekanik enerji ile sıcaklıktaki artış arasındaki ilişkiyi James Prescott Joule keşfetmiştir.

<span class="mw-page-title-main">Lazer soğutma</span>

Lazer soğutma; atomik ve moleküler örneklerin bir veya daha fazla lazer alan ile etkileşimi ile mutlak sıfıra yakın derecede soğutulduğu birçok tekniği ifade etmektedir.

Galile değişmezliği ya da Galile göreliliği der ki; hareket kanunlarının hepsi eylemsiz çerçeve içinde olur. Galileo Galilei bu prensibi ilk olarak 1632'de İki Dünya Sistemi Hakkında Diyalog adlı kitabında kullanmıştır. Prensibi açıklarken gemi örneğini vermiştir. Sakin bir denizde, hiçbir yere çarpmadan sabit hızda giden gemide, güvertenin altında olan bir gözlemci geminin hareketsiz olduğunu ya da hareket edip etmediğini söyleyemez demiştir. Bir diğer güzel örnekse; Dünyamız Güneş'in etrafında saniyede yaklaşık olarak 30 kilometre/saniye hızla dönmektedir ve güvertedeki gözlemci gibi biz de Dünya hakkında teknik olarak bu eylemsiz çerçeve kuralına uymasa da aynı şeyleri söyleyebiliriz.

<span class="mw-page-title-main">Kütle çekimsel sapan</span>

Yörüngesel mekanikte ve uzay mühendisliğinde, kütleçekimsel sapan veya çekim etkili manevra, yakıt, zaman ve gider açısından tasarruf yapmak için uzay araçlarının hız ve yönünün bir gezegenin veya başka bir astronomik aracın çekim etkisiyle değiştirilmesidir. Çekim etkisi, uzay araçlarının ivmelendirilmesi, hızlarının artırılıp veya azaltılması ve yönlerinin değiştirilmesi için kullanılabilir. Bu etki, kütleçekimi uygulayan gök cisminin uzay aracını çekmesiyle sağlanır. Bu teknik, ilk olarak 1961'de üç cisim problemi üzerinde çalışan Michael Minovitch tarafından önerildi. Gezegenler arası araştırma yapan Mariner 10 dan itibaren bu teknik kullanılmıştır.

<span class="mw-page-title-main">Geri tepme</span>

Geri tepme, bir fişek namluda patlaması sonucu merminin ve hasıl olan gazların ileriye doğru hareketinin sonucunda, Newton'un üçüncü yasasına göre tepki gücüne göre elde olunan, merminin ileriye doğru hareketini dengeleyen ve geriye doğru olan momentumdur. Momentum, küçük silahlarda ateşleyen kişinin vücudu kullanılarak yere aktarılırken, daha büyük ve yere monte edilmiş silahlarda montaj yolu ile yere aktarılır. Geri tepme gücünü durdurmak için silahı bir süreliğine ileriye doğru hareket ettirmek gerekirken, genellikle bu güç geri tepme gücünden daha küçük ve merminin namlu içindeki hareketinden daha uzun sürede olduğundan geri tepme gücü silahı geriye doğru hareket ettirir.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

<span class="mw-page-title-main">Esnek olmayan çarpışma</span> Enerjinin ısıya dönüştüğü, kinetik enerjinin korunmadığı çarpışma

Esnek olmayan çarpışmalar, esnek çarpışmaların aksine, sürtünme nedeniyle kinetik enerjinin korunmadığı bir çarpışma çeşididir.

<span class="mw-page-title-main">Durgun kütle</span>

Değişmez kütle, durgun kütle, gerçek kütle, tam kütle ya da sınır sistemleri durumunda basitce kütle, bir objenin veya Lorentz dönüşümlerine göre tüm referans çerçevelerinde aynı olan objelerin sisteminin toplam enerji ve momentum karakteridir. Eğer momentum çerçevesinin bir merkezi sistemde oluşuyorsa, sistemin değişmez kütlesi toplam enerjinin ışık hızının karesine bölümüyle bulunur. Diğer referans çerçevelerinde, sistemin enerjisi artar yalnız sistemin momentumu bundan çıkarılmıştır, yani değişmez kütle aynı kalır.

Joule veya jul, Uluslararası Birim Sistemi'nde enerji, veya ısı miktarından türetilmiş bir ölçü birimidir. Bir metre üzerinden bir newtonluk kuvvet uygulanarak harcanan enerjiye veya iki ucu arasında bir voltluk gerilim farkı olan bir devre elemanı üzerinden geçen bir amperlik akımınin tükettiği enerjiye eşittir. Adını İngiliz fizikçi James Prescott Joule'dan (1818-1889) almıştır.

Çarpışma iki ya da daha fazla cismin birbirlerine kısa bir süreliğine uyguladıkları kuvvet olayına denir. Çarpışma kelimesinin en yaygın kullanımı iki ya da daha fazla cismin birbirleriyle çarpışması anlamına gelmesine rağmen, kelimenin bilimsel olarak kullanımına baktığımızda çarpışma aslında kuvvetlerin büyüklükleri hakkında hiçbir şey ima etmez.