İçeriğe atla

Neumann polinomu

Matematikte, a Neumann polinomali,Carl Neumann tarafından özel durum için sunulan, Bessel fonksiyonu terimleri içerisinde fonksiyonların 1/z açılımında kullanılan bir polinomdur.[1]

İlk birkaç polinom

Polinomların genel formu için

burada üreteç fonksiyonu var

burada J Bessel fonksiyonu'dur.

form içindeki f fonksiyonun açılımı

için hesabı

burada ve c en yakın tekillik mesafesidir dan .

Örnekler

Bir örnek açılım

veya daha genel Sonine formülü[2]

burada is Gegenbauer polinomu. Sonra,[]

konfluent hipergeometrik fonksiyonu'dur.

ve özellikle de

indeks kayma formülü

Taylor açılımı (toplama formülü)

(cf.[3]Şablon:Verification failed)ve Bessel fonksiyonu integralinin açılımı

aynı tiptir.

Ayrıca bakınız

Notlar

  1. ^ Abramowitz and Stegun, p. 363, 9.1.82 18 Ağustos 2010 tarihinde Wayback Machine sitesinde arşivlendi. ff.
  2. ^ Erdélyi et al. 1955 II.7.10.1, p.64
  3. ^ I.S. Gradshteyn (И.С. Градштейн), I.M. Ryzhik (И.М. Рыжи); Alan Jeffrey, Daniel Zwillinger, editors. Table of Integrals, Series, and Products, seventh edition. Academic Press, 2007. ISBN 978-0-12-373637-6. Equation 8.515.1

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Student'in t dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

<span class="mw-page-title-main">Ki-kare dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

<span class="mw-page-title-main">Gama fonksiyonu</span>

Gama fonksiyonu, matematikte faktöriyel fonksiyonunun karmaşık sayılar ve tam sayı olmayan reel sayılar için genellenmesi olan bir fonksiyondur. Г simgesiyle gösterilir.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Skellam dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Skellam dağılımı bir ayrık olasılık dağılım tipidir. Skellam dağılımı iki tane beklenen değerleri ve olan Poisson dağılımı gösteren rassal değişken ve arasında bulunan fark olan nin gösterdiği olasılık dağılımdır.

Matematik'teki Dirichlet beta fonksiyonu özel fonksiyon'dur, aslında modifiye edilerek parantezlenmiş Riemann zeta fonksiyonu'nundan ibarettir. özel bir şekli Dirichlet L-fonksiyon'udur.

<span class="mw-page-title-main">Poligama fonksiyonu</span>

Matematik'te, poligama fonksiyonu' eşitliğin soludur ve türevin kuvvetine m konulduğunda eşitliğin sağ tarafındaki gama fonksiyonu'nun logaritma'sının (m + 1). türevi olarak tanımlanır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

<span class="mw-page-title-main">Ters Gama fonksiyonu</span>

Matematik'te ters gama fonksiyonu özel fonksiyon'dur.

<span class="mw-page-title-main">Laguerre polinomları</span>

Laguerre polinomları, matematikte adını Edmond Laguerre'den almıştır. Kanonik (benzer) adlandırma Laguerre denklemi'dir:

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Lorentz faktörü veya Lorentz terimi bir cismin herhangi bir hıza sahip olmadığı durumla bir hıza sahip olması sırasında kütle, zaman ve uzay ölçümlerinde oluşacak ölçüm farklılıklarını açıklayan niceliktir. Lorentz faktörü, referans çerçeveleri arasında dönüşüm yapılabilmesini sağlayan Lorentz dönüşümünden doğar. Faktör, Lorentz elektrodinamiği içindeki erken görünümü yüzünden Hollandalı fizikçi Hendrik Lorentz adına ithaf edilmiştir.

Kesirli analiz, matematiksel analiz'in bir koludur. Kesirli analiz, D = d/dx ile gösterilen türev işlemcisi'nin ve J ile gösterilen integrasyon işlemcisi'nin kuvvetlerinin reel sayı veya karmaşık sayı değerler olabilme olanaklarını inceler.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Özel fonksiyonların önemli bir bölümünü oluşturan hipergeometrik fonksiyonlar matematik, fizik, mühendislik ve olasılıkta karşımıza çıkar.

Matematikte Euler sayıları, Taylor serisi açılımıyla tanımlanan bir En tam sayı dizisidir..

Aşağıdaki matematiksel seriler listesi, sonlu ve sonsuz toplamlar için formüller içerir. Toplamları değerlendirmek için diğer araçlarla birlikte kullanılabilir.

Bessel polinomları, matematikteki ortogonal polinomların bir dizisidir. Bessel polinomlarıyla ilgili birbirinden farklı ama birbiriyle yakından ilişkili çok sayıda tanım vardır. Matematikçiler tarafından tercih edilen tanım şu seriyle verilmektedir:

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.