İçeriğe atla

Mutlak sıfır

Mutlak sıfır, bir maddenin moleküllerinin entalpi ve entropisinin teorik minimum değerine ulaştığı termodinamik sıcaklık ölçeğinin en alt sınırıdır. Teorik sıcaklık, ideal gaz yasasının ekstrapolasyonu ile hesaplanmıştır. Uluslararası uzlaşı neticesinde, mutlak sıfır Celsius ölçeğinde (Uluslararası Birimler Sistemi) −273.15 derece,[1][2] Fahrenheit ölçeğinde (Amerika Birleşik Devletleri geleneksel birimleri ya da İmparatorluk birimleri) −459.67 derece,[3] Kelvin ve Rankine ölçeklerinde de 0 derece olarak alınmıştır.[4]

Mutlak sıfır değeri −273.15°C veya 0 K olarak tanımlanır.

Teorik olarak mutlak sıfır sıcaklığına ulaşan (inen) bir maddenin iç enerjisi 0 (sıfır) olacağından daha fazla soğutmak mümkün değildir. Mutlak sıfır moleküllerin durduğu (hareketlerinin çok küçük titreşimlere indirgendiği) noktadır. Mutlak sıfır hesabında ihmal edilen bu titreşimin sebebi sıfır noktası enerjisi denilen enerjidir ve bu enerji maddeden uzaklaştırılamaz. Mutlak sıfır maddelerin ısı basınç diyagramından hesaplanabilir. Örneğin, suyun normal atmosfer basıncı altında su-buz su ve su-su buharı hallerindeki ısı basınç diyagramları çizilirse, diyagramdaki üç eğrinin de skalada mutlak sıfır değerinde birleşeceği görülür.[]

Termodinamik

Sıcaklık 0 K (-273 °C; -459,4 °F)'e yakınsadığında, tüm moleküler hareket durmaya yakınsar ve herhangi bir adyabatik işlem için ΔS = 0 yakınsanır (S entropi). Böyle bir durumda, "T" → 0 yakınsanırken, saf maddeler (ideal olarak) yapısal kusurları olmayan ideal kristaller oluşturabilir.

Max Planck'ın termodinamiğin üçüncü yasası'nın güçlü formülasyonuna göre, bir ideal kristalin entropisi mutlak sıfırda sıfırlanır. Nernst ısı teoremi ise, daha az ihtilaflı bir sav olarak, T → 0'a yakınsarken herhangi bir izotermik işlemin entropi değişiminin sıfıra yakınsadığını önerir:

Farklılıklarına rağmen tüm bu savlar, ideal bir kristalin entropisinin sabit bir değere yakınsadığını önermektedir.

Bose-Einstein yoğunlaşması ile ilişki

Mutlak sıfırdan bir derecenin birkaç milyarda biri kadar sıcak bir sıcaklıkta rubidyum atomlu bir gazın hız-dağılım verileri. Sol: Bose-Einstein yoğunlaşmasının ortaya çıkmasından hemen önce. Orta: yoğuşmanın ortaya çıkmasından hemen sonra. Sağ: buharlaşmadan sonra, neredeyse saf bir yoğuşma numunesinin geride kalması.

Bose-Einstein yoğunlaşması, bir dış potansiyele hapsedilmiş ve mutlak sıfıra çok yakın sıcaklıklara soğutulmuş zayıf etkileşimli bozonlar içeren seyreltik bir gazın madde haline denir. Bu koşullar altında, bozonların büyük bir kısmı dış potansiyelin en düşük kuantum halinde bulunur ve bu sebeple bozonların kuantum etkileri makroskopik ölçekte gözlenebilir hale gelir.[5]

Maddenin bu hali ilk olarak 1924–25'te Satyendra Nath Bose ve Albert Einstein tarafından tahmin edilir. Bose ilk önce Einstein'a ışık kuantasının (günümüz adlandırılması foton) kuantum istatistikleri hakkında bir makale gönderir. Einstein bu makaleden etkilenir ve makaleyi İngilizceden Almancaya çevirerek Bose adına Zeitschrift für Physik isimli hakemli bir dergiye gönderir. Einstein, ilerleyen süreçte ise Bose'un parçacıklar üzerine olan fikirlerini iki yeni makale üzerinden geliştirir.[6]

Bu gelişmelerden yetmiş yıl sonra, 1995'te, Eric Cornell ve Carl Wieman Boulder Kolorado Universitesi NIST-JILA laboratuvarında, rubidyum atomlu bir gazı 170 nanokelvin (nK)'e (1,7×10-7 K)[7] kadar soğutmayı başararak ilk gazlı Bose–Einstein yoğunlaşmasını üretir.[8]

2003'te ise, Massachusetts Teknoloji Enstitüsü araştırmacıları sodyum atomlarının Bose–Einstein yoğunlaşması üzerinden 450 ± 80 picokelvin (pK) (4,5×10-10 K) seviyesi düşük bir sıcaklığa inerek rekor kırar.[9]

Ulaşılan sıcaklıklar

Termodinamik kanunları mutlak sıfır sıcaklığına ulaşılamayacağını belirtir çünkü soğutulan maddenin sıcaklığı, soğutan maddenin sıcaklığına yakınsayarak yaklaşır. İki sıcaklık sonsuza kadar yaklaşmaya devam ederler fakat aynı değere ulaşamazlar. Bilim insanları tam olarak bir “sıfır” ısı enerjisi durumu yaratamasalar da maddenin alışılmadık kuantum etkileri gösterdiği, mutlak sıfıra oldukça yakın sıcaklıklara ulaşabilmektedirler. Şu ana kadar ulaşılmış en düşük sıcaklık 38 pikoKelvin'dir.[10]

Ayrıca bakınız

Kaynakça

  1. ^ "Unit of thermodynamic temperature (kelvin)". SI Brochure, 8th edition. Section 2.1.1.5: Bureau International des Poids et Mesures. 13 Mart 2010 [1967]. 7 Ekim 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Haziran 2017. 
  2. ^ Arora, C. P. (2001). Thermodynamics. Table 2.4 page 43: Tata McGraw-Hill. ISBN 978-0-07-462014-4. 
  3. ^ Zielinski, Sarah (1 Ocak 2008). "Absolute Zero". Smithsonian Institution. 1 Nisan 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 26 Ocak 2012. 
  4. ^ "Uluslararası anlaşma". 26 Eylül 2007 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Aralık 2006. 
  5. ^ Donley, Elizabeth A.; Claussen, Neil R.; Cornish, Simon L.; Roberts, Jacob L.; Cornell, Eric A.; Wieman, Carl E. (2001). "Dynamics of collapsing and exploding Bose–Einstein condensates". Nature. 412 (6844): 295-299. arXiv:cond-mat/0105019 $2. Bibcode:2001Natur.412..295D. doi:10.1038/35085500. PMID 11460153. 
  6. ^ Clark, Ronald W. "Einstein: The Life and Times" (Avon Books, 1971) s. 408–9 0- 380-01159-X
  7. ^ Levi, Barbara Goss (2001). "Cornell, Ketterle, and Wieman Share Nobel Prize for Bose–Einstein Condensates". Search & Discovery. Physics Today online. 24 Ekim 2007 tarihinde kaynağından arşivlendi. Erişim tarihi: 26 Ocak 2008. 
  8. ^ "New State of Matter Seen Near Absolute Zero". NIST. 1 Haziran 2010 tarihinde kaynağından arşivlendi. 
  9. ^ Leanhardt, A. E.; Pasquini, TA; Saba, M; Schirotzek, A; Shin, Y; Kielpinski, D; Pritchard, DE; Ketterle, W (2003). "Cooling Bose–Einstein Condensates Below 500 Picokelvin" (PDF). Science. 301 (5639): 1513-1515. Bibcode:2003Sci...301.1513L. doi:10.1126/science.1088827. PMID 12970559. 10 Eylül 2021 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 11 Nisan 2022. 
  10. ^ Deppner, Christian; Herr, Waldemar; Cornelius, Merle; Stromberger, Peter; Sternke, Tammo; Grzeschik, Christoph; Grote, Alexander; Rudolph, Jan; Herrmann, Sven; Krutzik, Markus; Wenzlawski, André (30 Ağustos 2021). "Collective-Mode Enhanced Matter-Wave Optics". Physical Review Letters. 127 (10): 100401. doi:10.1103/PhysRevLett.127.100401. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Termodinamik</span> enerji bilimi

Termodinamik; ısı, iş, sıcaklık ve enerji arasındaki ilişki ile ilgilenen bilim dalıdır. Basit bir ifadeyle termodinamik, enerjinin bir yerden başka bir yere ve bir biçimden başka bir biçime transferi ile ilgilenir. Bu süreçteki anahtar kavram, ısının, belirli bir mekanik işe denk gelen bir enerji biçimi olmasıdır.

<span class="mw-page-title-main">Kelvin</span> Termodinamik sıcaklığın SI birimi

Kelvin, Uluslararası Birim Sistemi'ne göre temel sıcaklık ölçüsü birimi. Sembolü K'dir. İsmini, termodinamikteki mutlak sıfır kavramını ilk defa gazlardan tüm maddelere uygulayan İskoç asıllı bilim insanı Lord Kelvin'den alır.

<span class="mw-page-title-main">Maddenin hâlleri</span> maddenin farklı aşamalarında yer alan farklı hâlleri

Bir fizik terimi olarak maddenin hâli, maddenin aldığı farklı fazlardır. Günlük hayatta maddenin dört farklı hâl aldığı görülür. Bunlar; katı, sıvı, gaz ve plazmadır. Maddenin başka hâlleri de bilinir. Örneğin; Bose-Einstein yoğunlaşması ve nötron-dejeneje maddesi. Fakat bu hâller olağanüstü durumlarda gerçekleşir, çok soğuk ya da çok yoğun maddelerde. Maddenin diğer hâllerininde, örneğin quark-gluon plazmalar, mümkün olduğuna inanılır fakat şu an sadece teorik olarak bilinir. Tarihsel olarak, maddenin özelliklerindeki niteleyici farklılıklara dayanarak ayrım yapılır. Katı hâldeki madde bileşen parçaları ile bir arada tutulur ve böylece sabit hacim ve şeklini korur. Sıvı hâldeki madde hacmini korur fakat bulunduğu kabın şeklini alır. Bu parçalar bir arada tutulur ama hareketleri serbesttir. Gaz hâlindeki madde ise hem hacim olarak hem de şekil olarak bulunduğu kaba ayak uydurur.Bu parçalar ne beraber ne de sabit bir yerde tutulur. Maddenin plazma hâli ise, nötr atomlarda dahil, hacim ve şekil olarak tutarsızdır. Serbestçe ilerleyen önemli sayıda iyon ve elektron içerirler. Plazma, evrende maddenin en yaygın şekilde görülen hâlidir.

Celsius ölçeği, 1742'de İsveçli astronom Anders Celsius'un ismiyle adlandırılmış bir sıcaklık ölçme birimidir.

<span class="mw-page-title-main">Evren</span> uzay, zaman ve herşeyin bütünü

Evren, Kâinat veya Kozmos, gezegenler, yıldızlar, gökadalar ve diğer tüm madde ile enerji yapıları dahil olmak üzere uzay ve zamanın tamamı ve muhtevasıdır. Bununla birlikte gözlemlenebilir evren, temel parçacıklardan başlayarak gökadalar ve gökada kümeleri gibi büyük ölçekli yapılara kadar tüm madde ve enerjinin mevcut düzeniyle sınırlıdır.

<span class="mw-page-title-main">Sıcaklık</span> maddenin sıcak ya da soğuk gibi ortak kavramları olduğunu ifade etmek kullanılan fiziksel özellik

Sıcaklık ya da suhunet, bir cismin sıcaklığının ya da soğukluğunun bir ölçüsüdür. Gazlar için kinetik enerji, mutlak sıcaklık dereceleriyle orantılıdır.

<span class="mw-page-title-main">Entalpi</span>

Entalpi, maddenin yapısında depoladığı her türden enerjilerin toplamıdır. H ile simgelenir. Bir mol maddede depolanmış enerjiye o maddenin molar entalpisi denir.

Süperiletkenlik, süperiletken adı verilen maddelerin karakteristik bir kritik sıcaklığın (Tc) altında derecelere soğutulmasıyla ortaya çıkan, maddenin elektriksel direncinin sıfır olması ve manyetik değişim alanlarının ortadan kalkması şeklinde görülen bir fenomendir. 8 Nisan 1911 tarihinde Hollandalı fizikçi Heike Kamerlingh Onnes tarafından keşfedilmiştir. Ferromanyetizma ve atomik spektrumlar gibi, süperiletkenlik kuantum mekaniğine girer. Karakteristik özelliklerini Meissner efektinden alır; süperiletken, süperiletkenlik durumuna geçerken bütün manyetik alan çizgilerini içeriden dışarıya atar. Meissner efektinin görülmesi de süperiletkenliğin klasik fizik tarafından mükemmel iletkenlik olarak tasvir edilmesini olanaksız hale getirir.

<span class="mw-page-title-main">Bose-Einstein yoğunlaşması</span>

Bose-Einstein yoğunlaşması (BEY), parçacıkları bozonlardan oluşan maddelerin en alt enerji seviyesinde yoğunlaştığı, kuantum etkilerinin gözlenebildiği maddenin bir halidir. Bozonik atomlar için, seyreltilmiş gaz halinde lazer soğutması aracılığıyla mutlak sıfır sıcaklığına doğru inilerek bu hale geçiş yani yoğunlaşma sağlanabilir. Atomların klasik gazlardan farklı olarak Maxwell-Boltzmann istatistiği yerine Bose-Einstein istatistiğine makroskobik olarak/büyük ölçekte uyması BEY'nin belirleyici özelliğidir.

Yoğun madde fiziği, maddenin yoğun hallerinin fiziksel özellikleriyle ilgilenen bir fizik dalıdır. Yoğun madde fizikçileri bu hallerin davranışını fizik kurallarını kullanarak anlamaya çalışır. Bunlar özellikle kuantum mekaniği kuralları, elektromanyetizma ve istatistiksel mekaniği içerir. En bilinen yoğun fazlar katı ve sıvılardır, harici yoğun fazlar ise düşük sıcaklıktaki bazı materyaller tarafından gösterilen üstünileten faz, atom kafeslerindeki dönüşlerin ferromanyetik ve antiferromanyetik fazları ve soğuk atom sistemlerinde bulunan Bose-Einstein yoğunlaşması. Araştırma için uygun sistemlerin ve fenomenlerin çeşitliliği yoğun madde fiziğini modern fiziğinin en aktif alanı yapıyor. Her 3 Amerikan fizikçiden biri kendini yoğun madde fizikçisi olarak tanımlıyor ve Yoğun Madde Fiziği Bölümü Amerikan Fizik Topluluğu’ndaki en geniş bölümdür. Bu alan kimya, malzeme bilimi ve nano teknoloji ile örtüşür ve atom fiziği ve biyofizikle de yakından ilgilidir. Teorik yoğun madde fiziği teorik parçacık ve nükleer fizikle önemli kavramlar paylaşır.

<span class="mw-page-title-main">Wolfgang Ketterle</span>

Wolfgang Ketterle, Alman fizikçi. 2001 yılında Eric Allin Cornell ve Carl Wieman ile beraber Nobel Fizik Ödülü'nü kazanmıştır.

<span class="mw-page-title-main">Termodinamik kanunları</span>

Termodinamik yasaları, termodinamiğin temelini oluşturan dört yasadır. Termodinamik proseslerdeki ısı ve transferlerinin yapısını tanımlar.

<span class="mw-page-title-main">Carl Wieman</span>

Carl Edwin Wieman, 1995 yılında Eric Allin Cornell ile ilk doğru Bose-Einstein Yoğuşmasını ürettiği için 2001 Nobel Fizik Ödülünü kazanan, günümüzde Colombia Üniversitesinde profesörlük yapan Amerikalı fizikçidir.

<span class="mw-page-title-main">Eric Cornell</span> Amerikalı fizikçi

Eric Allin Cornell Carl E. Wieman ile Bose-Einstein yoğunlaşması üzerine yaptıkları buluş nedeniyle 2001 Nobel Fizik Ödülü kazanmış Amerikan fizikçidir.

<span class="mw-page-title-main">Süperakışkanlık</span>

Süperakışkanlık maddenin sıfır akmazlığa sahip bir akışkan gibi davrandığı hâlidir. Bu fenomen ilk olarak sıvı helyum ile keşfedildiyse de yalnızca sıvı helyum teorisinde değil aynı zamanda astrofizik, yüksek enerji fiziği ve kuantum kütleçekimi teorilerinde de uygulama alanına girmiştir. Bu fenomen Bose-Einstein yoğunlaşması ile bağıntılıdır ancak özdeş değildir: Bütün Bose-Einstein yoğuşukları süperakışkan olmadığı gibi bütün süperakışkanlar da Bose-Einstein yoğuşuğu değildir.

<span class="mw-page-title-main">Termodinamik ve istatistiksel fizik kronolojisi</span> Termodinamik ve istatistiksel fizik ile ilgili olayların kronolojisidir.

Termodinamik ve istatistiksel fizik ile ilgili olayların kronolojisidir.

<span class="mw-page-title-main">Termodinamiğin üçüncü kanunu</span>

Termodinamik'in üçüncü yasası bazen ‘mutlak sıfır sıcaklığında dengede olan sistemlerin özelliklerine ilişkin’ olarak şu şekilde tanımlanır:

Isıl ışınım maddedeki yüklü parçacıkların ısıl hareketiyle meydana gelmiş elektromanyetik ışınımdır. Isısı mutlak sıfırdan büyük olan her madde ısıl ışınım yayar. Isısı mutlak sıfırdan büyük olan maddelerde atomlar arası çarpışmalar, atomların ya da moleküllerin kinetik enerjisinde değişime neden olur.

Fizikte kara delik termodinamiği, termodinamik kanunlarını kara deliğin olay ufkuyla bağdaştırmaya çalışan bir araştırma alanıdır. Kara delik ışınımının istatistiksel mekanik konusu, kuantum mekaniğinin gelişmesini sağlar. Kara delik ışınımının istatistiksel mekanik konusunu anlamaya çalışmak, bu konunun kuantum yer çekimi konusunu anlamamızda büyük etkisi olacaktır. Ayrıca holografi ilkesini anlamamızı sağlayacaktır.

Buharlaşma entropisi sıvının entropisinin buharlaşma sebebiyle olan artışıdır. Her zaman pozitif olmakla beraber, bu artışın sebebi düzensizliğin sıvı halden görece daha fazla hacim kaplayan gaz hale geçerken artıyor olmasıdır. standart basınçta Po = 1 bar, buharlaşma enerjisi DSoVap şeklinde gösterilir ve birimi J mol−1 K−1.