İçeriğe atla

Muller yöntemi

Sayısal analizde Muller yöntemi, bir kök bulma algoritmasıdır. İlk kez 1956 yılında Amerikalı matematikçi David E. Muller tarafından ortaya konan algoritma,[1] kiriş yönteminin bir genelleştirilmesi olarak da düşünülebilir. Bu yöntem, karmaşık kökleri de bulabilmesi nedeni ile fizik ve mühendislik uygulamalarında sıklıkla kullanılmaktadır.[2]

Yöntem

Muller yöntemi için üç farklı tahmin noktası gerekmektedir. Bu üç noktadan geçen parabolün x eksenini kestiği nokta bir sonraki adımdaki tahmini kök olarak atanır. Her adımda bir önceki adımda elde edilen yaklaşık kök ve son iki tahmin noktaları kullanılır.[2] Bu şekilde k-ıncı adımdaki yaklaşık kök için algoritma aşağıdaki formül ile özetlenebilir:[1]

Katsayıları reel sayılardan oluşan parabollerin karmaşık köklerinin de olabilmesi nedeni ile bu yöntem karmaşık kökleri de bulabilmektedir.[1]

Ayrıca bakınız

Kaynakça

  1. ^ a b c Muller, David E. (1956). "A method for solving algebraic equations using an automatic computer". Mathematical Tables and Other Aids to Computation (İngilizce). 10 (56). ss. 208-215. doi:10.1090/S0025-5718-1956-0083822-0. JSTOR 2001916. MR 0083822. 
  2. ^ a b Burden & Faires 2000, s. 95-99.
Kitap
  • Burden, Richard L.; Faires, J. Douglas (2000). Numerical Analysis (İngilizce). Brooks Cole. ISBN 9780534382162. 

İlgili Araştırma Makaleleri

Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.

<span class="mw-page-title-main">Pi sayısı</span> dairenin çevresinin çapına oranını ifade eden irrasyonel matematik sabiti

Pi sayısı , bir dairenin çevresinin çapına bölümü ile elde edilen irrasyonel matematik sabitidir. İsmini, Yunanca περίμετρον (çevre) sözcüğünün ilk harfi olan π harfinden alır. Pi sayısı, Arşimet sabiti ve Ludolph sayısı olarak da bilinir. Aynı zamanda ismini yunancada pie anlamına gelen πίτα' dan alır.

<span class="mw-page-title-main">Taylor serisi</span>

Taylor serisi matematikte, bir fonksiyonun, o fonksiyonun terimlerinin tek bir noktadaki türev değerlerinden hesaplanan sonsuz toplamı şeklinde yazılması şeklindeki gösterimi/açılımıdır. Adını İngiliz matematikçi Brook Taylor'dan almıştır. Eğer seri sıfır merkezli ise, Taylor serisi daha basit bir biçime girer ve bu özel seriye İskoç matematikçi Colin Maclaurin'e istinaden Maclaurin serisi denir. Bir serinin terimlerinden sonlu bir sayı kadarını kullanmak, bu seriyi bir fonksiyona yakınsamak için genel bir yöntemdir. Taylor serisi, Taylor polinomunun limiti olarak da görülebilir.

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Hiperbolik sayılar</span>

Gerçel sayılarda olmayan ve karesi 1 olan bir sayının kümeye katılmasıyla üretilen kümeye hiperbolik sayılar kümesi denir. Tıpkı karmaşık sayılarda olduğu gibi, hiperbolik sayılar şeklinde yazılabilen sayılardır, ancak karmaşık sayılardan tek farkı hiperbolik birim denilen sayının

Ayrık Fourier Dönüşümü, Fourier analizinde kullanılan özel bir Fourier dönüşümüdür.

<span class="mw-page-title-main">Weibull dağılımı</span> Olasılık dağılımı

Olasılık kuramı ve istatistik bilim dallarında Weibull dağılımı ) bir sürekli olasılık dağılımı olup olasılık yoğunluk fonksiyonu şöyle ifade edilir:

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

<span class="mw-page-title-main">Cebirsel sayılar</span>

Cebirsel sayılar, rasyonel katsayıları olan tek değişkenli sıfırdan farklı bir polinomun kökü olarak ifade edilebilen sayılardır. Mesela, altın oran, , cebirsel bir sayı örneğidir çünkü x2x − 1 polinomunun bir köküdür. Bu durumda, söz konusu polinomun değerinin sıfıra eşitlendiği x değeridir. Diğer bir örnek olarak, biçimindeki karmaşık sayı, x4 + 4 polinomunun bir kökü olduğundan dolayı cebirsel sayı olarak kabul edilir.

Köklerin yer eğrisi, kontrol teorisinde, bir kapalı çevrim transfer fonksiyonunun kutuplarının sistemin kazancına göre değişimini gösteren çizimlerdir.

<span class="mw-page-title-main">Karmaşık düzlem</span>

Matematikte karmaşık düzlem, gerçel eksen ve ona dik olan sanal eksen tarafından oluşturulmuş, karmaşık sayıların geometrik bir gösterimidir. Karmaşık sayının gerçel kısmının x-ekseni boyuncaki yer değiştirmeyle, sanal kısmının ise y-eksenindeki yer değiştirmeyle temsil edildiği değiştirilmiş bir Kartezyen düzlem olarak düşünülebilir.

<span class="mw-page-title-main">Sayısal analiz</span>

Sayısal analiz, diğer adıyla nümerik analiz veya sayısal çözümleme, matematiksel analiz problemlerinin yaklaşık çözümlerinde kullanılan algoritmaları inceler. Bu nedenle birçok mühendislik dalı ve doğa bilimlerinde önem arz eden sayısal analiz, bilimsel hesaplama bilimi olarak da kabul edilebilir. Bilgisayarın işlem kapasitesinin artması ile gündelik hayatta ortaya çıkan birçok sistemin matematiksel modellenmesi mümkün olmuş ve sayısal analiz algoritmaları burada ön plana çıkmıştır. 21. yüzyıldan itibaren bilimsel hesaplama yöntemleri mühendislik ve doğa bilimleri ile sınırlı kalmamış ve sosyal bilimler ile işletme gibi alanları da etkilemiştir. Sayısal analizin alt başlıklarına adi diferansiyel denklemlerin yaklaşık çözümleri ve özellikle veri biliminde önem taşıyan sayısal lineer cebir ile optimizasyon örnek gösterilebilir.

<span class="mw-page-title-main">Kök (matematik)</span>

Matematikte gerçel, karmaşık veya daha genel bir anlamda vektör değerli bir fonksiyonun kökü, fonksiyonun tanım kümesinde bulunan ve fonksiyonun 0 değerini aldığı noktalardır. Yani, eğer bir V kümesinden bir W vektör uzayına tanımlı bir fonksiyonu

<span class="mw-page-title-main">Pergel ve çizgilik çizimleri</span>

Pergel ve çizgilik çizimi, belli uzunlukta doğrular, belli büyüklükte açılar ve diğer geometrik şekilleri çizmek için sadece ideal bir çizgilik ve pergel kullanılmasıdır.

<span class="mw-page-title-main">Sayısal türev</span>

Sayısal analizde, fonksiyonun değerleri veya fonksiyon hakkında bilinen diğer bilgiler kullanılarak bir matematiksel fonksiyonun türevinin hesaplanmasında kullanılan algoritmalara sayısal türev denir.

<span class="mw-page-title-main">Zamanda sonlu farklar yöntemi</span> elektromanyetizmada kullanılan bir yöntem

Zamanda sonlu farklar yöntemi, kısaca FDTD ya da Yee yöntemi, hesaplamalı elektromanyetizmada kullanılan bir sonlu farklar tekniğidir. Zaman düzleminde çalışan bir yöntem olduğundan ötürü, elektromanyetik spektrumun mikrodalga veya görünür ışık gibi farklı bölgelerinde anten veya fotonik aygıt tasarımı gibi çeşitli problemlerin çözümünde kullanılır. Aynı zamanda bu özellik, simülasyonu yapılan sistemin geniş bir frekans yelpazesine tepkisinin gözlenebilmesini sağlamaktadır. Matris tersinmesi gerektirmeyen bu FDTD, en yaygın elektromanyetik simülasyon yöntemlerinden biri olarak kabul edilir.

<span class="mw-page-title-main">Orta Çağ İslam matematiği</span> yaklaşık 622 ile 1600 yılları arasında İslam medeniyeti altında korunan ve geliştirilen matematiğin bütünü

İslam'ın Altın Çağı'nda matematik, özellikle 9. ve 10. yüzyıllarda, Yunan matematiği ve Hint matematiği üzerine inşa edilmiştir. Ondalık basamak-değer sisteminin ondalık kesirleri içerecek şekilde tam olarak geliştirilmesi, ilk sistematik cebir çalışması (Hârizmî tarafından yazılan Cebir ve Denklem Hesabı Üzerine Özet Kitap adlı eser ve geometri ve trigonometride önemli ilerlemeler kaydedilmiştir.

<span class="mw-page-title-main">Newton metodu</span>

Sayısal analizde, Newton-Raphson yöntemi olarak da bilinen ve adını Isaac Newton ve Joseph Raphson'dan alan Newton metodu, gerçel değerli bir fonksiyonun köklerine art arda daha iyi yaklaşımlar üreten bir kök bulma algoritmasıdır. En temel versiyonu, tek bir gerçek değişkenli x için tanımlı olan f fonksiyonu, fonksiyonun türevi f ′ ve f 'in bir kökü için bir x0 başlangıç tahmini ile başlar. Fonksiyon yeterli ön kabulleri karşılıyorsa ve ilk tahmin yakınsa, o zaman