İçeriğe atla

Moment (matematik)

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

Sıfır değeri etrafında olan momentler en basit olarak bir fonksiyonun momenti diye anılır.

Olasılık kuramı ve istatistik bilim dalları için momentlerin ilgili olduğu fonksiyonlar bir rassal değişken için olasılık yoğunluk fonksiyonu ile ilgilidir. Bir olasılık yoğunluk fonksiyonun sıfır etrafındaki ninci momenti Xnin matematiksel beklentidir. Ortalama μ etrafındaki momentler merkezsel momentler olarak adlandırılır; bunlar bir fonksiyonun şeklini betimlerler.

Eğer f bir olasılık yoğunluk fonksiyonu ise, o halde yukarıda verilmiş olan entegralin değeri olasılık dağılımınin ninci moment Riemann-Stieltjes entegrali tarafından şöyle verilir:

Burada X bu dağılımı gösteren bir rassal değişken ve E bir beklenti operatörüdür.

Eğer

ise momentin mevcut olmadığı kabul edilir. Eğer herhangi bir nokta etrafında ninci moment belirlenebilirse, o halde (n - 1)inci moment de bulunur ve her bir nokta etrafında daha-alt derecelerdeki momentler de bulunur.

Momentlerin önemi

Sıfır etrafindaki birinci moment, eğer anlamlı ise, Xin matematiksel beklentisi yani μ olarak yazılan Xin olasılık dağılımının ortalamasıdır. Daha yüksek dereceler için merkezsel momentler sıfır etrafında momentlerden daha ilgi çekicidir.

Bir rassal değişken olan Xin olasılık dağılımının ninci merkezsel momenti şudur:

Böylece birinci merkezsel moment 0 olur.

Varyans

İkinci merkezsel moment varyans σ2 olur; bunun pozitif kare kökü standart sapma σ olur.

Normalize edilmiş momentler

Normalize edilmiş ninci merkezsel moment veya standardize edilmis moment ninci merkezsel moment bolu σn olur; yani t = (x - μ)/σ ifadesinin ninci momentidir. Bu normalize edilmiş momentler boyutsuz niceliklerdir ve herhangi bir dogrusal ıskala değişiminden etkilenmeden bir dağılımı temsil edebilirler.

Çarpıklık

Üçüncü merkezsel moment bir dağılımın simetrik olmaması ölçüsüdür. Herhangi bir simetrik dağılım için üçüncü merkezsel moment, eğer tanımlanabilirse, 0 olur. Normalize edilmiş üçüncü merkezsel moment γ ile yazılıp çarpıklık adı ile anılır. Sol tarafa çarpıklık gösteren (yani sol kuyruğu daha ağır basan) bir dağılım negatif çarpıklık gösterir. Sağ tarafa çarpıklık gösteren (yani sağ kuyruğu daha ağır basan) bir dağılım pozitif çarpıklık gösterir.

Normal dağılımdan çok fazla farklı olmayan dağılımlar için medyan μ - γσ/6 değerine yaklaşık olur ve mod ise μ - γσ/2 ifadesine yaklaşıktır.

Basıklık

Dördüncü merkezsel moment dağılımın ince ve sivri mi yoksa kalın ve basık mı olduğunun ölçüsüdür ve bu niteliği ayırt etmek için aynı varyansı gösteren bir normal dağılım ile karşılaştırma yapılır. Dördüncü merkezsel moment, bir dörtlü üstelin matematiksel beklentisi olduğu için, eğer tanımı yapılabilirse, (sadece dejenere nokta dağılım hariç) her zaman pozitif değer alır. Bir normal dağılım için dördüncü merkezsel moment 3σ4 olur.

Basıklık ölçüsü olarak kullanılan basıklık fazlalığı katsayısı κ, normalize edilmiş dördüncü merkezsel moment eksi 3 olarak tanımlanır. (Gelecek kısımda gösterildiği gibi, bu ölçü dördüncü kümülant bölü varyans kare olarak da tanımlanır.) Bazı otoriteler bu şekilde normal dağılımı koordinatların orijinine koymak için kullanılan eksi 3 terimini tenkit etmektedirler. Eğer bir dağılım ortalama değerinde bir doruk ve iki tarafında uzun kuyruklar gösterirse, dördüncü moment değeri büyük olur ve basıklık ölçüsü κ pozitiftir; aksi halde dördüncü moment değeri küçük ve basıklık ölçüsü κ negatif olur. Böylece sınırlanmış dağılımlarda basıklık düşüktür.

Basıklık ölçüsü hiç sınırsız bir şekilde pozitif olması mümkündür ve κ değeri mutlaka γ2 - 2; değerine eşit veya bu değerden büyük olmalıdır. κ değeri ile γ2 - 2; değeri eşitliği ise ancak ve ancak Bernoulli dağılımı için doğrudur. Normal dağılımdan çok farklı şekil göstermeyen sınırsız çarpıklık gösteren dağılımlar için κ değeri γ2 ile 2γ2 arasında bulunur.

Bu eşitsizlik terimin ispat etmek için önce şu terimi ele alalım:

Bunda T = (X - μ)/σ olur. Bu bir karenin matematiksel bekleyişidir. a değeri ne olursa olsun bu non-negatiftir ve ayni zamanda a ifadesinde bir kuadratik denklem olur. Bu da ispati istenilen ifadedir.

Kümülantlar

Birinci moment ve ikinci ve üçüncü normalize edilmemiş merkezsel momentler doğrusaldırlar; yani eğer X ve Y istatistiksel olarak bağımsız rassal değişkenlerse, o halde

ve

ve

eşitlikleri gerçektir. (Bu şartlar yalnız bağımsızlık şartına değil daha zayıf şartlar altında bulunan değişkenler için de gerçek olabilir.) Birinci şart her zaman doğru olup ikinci şart da doğru olursa bu değişkenler arasında korelasyon yoktur.

Bunun doğruluğunu anlamak için bu momentlerin ilk üç kümülant olduklarını ve dördüncü kümülantin ise basıklık katsayısı κ çarpı σ4 olduğunu anlamak yeterlidir.

Bütün kümülantlar momentlerin polinomlarıdır yani faktoriyel momentlerdir. Merkezsel momentler sıfır etrafındaki momentlerin polinomlarıdır ve bunun aksi de doğrudur.

Örneklem momentleri

Bir anakütle için momentler bir örneklem k-inci momenti kullanılarak kestirimi yapılabilirler. Örneklem k-inci momenti şöyle ifade edilir:

ve bu anakütleden rassal örneklem ile seçilmiş X1,X2,..., Xn örneklem değerlerine uygulanır.

Bu bir yansız kestirimdir. Çünkü herhangi bir n büyüklükte bir örneklem için örneklem momentinin matematiksel beklenen değerinin anakütle k-inci momentine eşit olduğu hemen gösterilebilir.

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

İstatistik bilimi için mod bir veri kümesi içinde en sık görülen değerdir. Tepedeğer olarak da adlandırılır. Bazı kullanım alanlarında, özellikle eğitim alanında, örnek veriler çok kere puan olarak anılmakta ve örnek mod değerine ise mod puanı adı verilmektedir.

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

<span class="mw-page-title-main">Çarpıklık</span>

Çarpıklık olasılık kuramı ve istatistik bilim dallarında bir reel-değerli rassal değişkenin olasılık dağılımının simetrik olamayışının ölçülmesidir.

<span class="mw-page-title-main">Skellam dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Skellam dağılımı bir ayrık olasılık dağılım tipidir. Skellam dağılımı iki tane beklenen değerleri ve olan Poisson dağılımı gösteren rassal değişken ve arasında bulunan fark olan nin gösterdiği olasılık dağılımdır.

Olasılık kuramı ve bir dereceye kadar istatistik bilim dallarında basıklık kavramı 1905da K. Pearson tarafından ilk defa açıklanmıştır. Basıklık kavramı bir reel değerli rassal değişken için olasılık dağılımının, grafik gösteriminden tanımlanarak ortaya çıkarılan bir kavram olan, sivriliği veya basıklığı özelliğinin ölçümüdür. Basıklık kavramının ayrıntıları olasılık kuramı içinde geliştirilmiştir. Betimsel istatistik için bir veri setinin basıklık karakteri pek dikkate alınmayan bir özellik olarak görülmektedir. Buna bir neden parametrik çıkarımsal istatistik alanında basıklık hakkında hemen hemen hiçbir kestirim veya sınama bulunmamasındandır ve pratik istatistik kullanımda basıklık pek önemsiz bir karakter olarak görülmektedir. Belki de basıklık ölçüsünün elle hesaplanmasının hemen hemen imkânsızlığı buna bir neden olmuştur.

İstatistik bilim dalında, Jarque-Bera sınaması normal dağılımdan ayrılmayı ölçmek için kullanılan bir uygulama iyiliği ölçüsüdür. İlk defa bu sınamayi ortaya atan ekonometrici A.K.Bera ve C.M.Jarque adları ile anılmaktadır.

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Olasılık kuramı ve istatistik bilim dallarında, bir rassal değişken X için, eğer beklenen değer var ise, moment üreten fonksiyon şöyle tanımlanır:

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

<span class="mw-page-title-main">Büyük sayılar yasası</span>

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

Olasılık kuramı ve istatistik bilim dallarında bir olasılık dağılımı için kinci standardize edilmiş moment olarak tanımlanır. Burada kinci ortalama etrafındaki moment ve σ standart sapma olur. Bu kinci momentin standart sapma ya göre normalize edilmesidir.

Olasılık kuramı ve istatistik bilimsel dallarında bir reel-değerli rassal değişken için k-ıncı ortalama etrafındaki moment, E beklenen değer operatörü olursa

μk := E[(X - E[X])k]
<span class="mw-page-title-main">Cauchy dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken Xin μ = E(X) olarak ifade edilen beklenen değeri ve σ² = E((X - μ)²) olarak ifade edilen varyansı bulunur. Bunlar ilk iki kümülant olarak belirlenirler; yani

κ1 = μ ve κ² = σ².

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

Medyan bir anakütle ya da örneklem veri serisini küçükten büyüğe doğru sıraladığımızda, seriyi ortadan ikiye ayıran değere denir. İstatistiğin bir alt dalı olan betimsel istatistikde medyan bir merkezsel konum ölçüsü kabul edilir.

<span class="mw-page-title-main">Bir olayın olma olasılığı</span>

Olasılık yoğunluk fonksiyonu, olasılık kuramı ve bir olayın olma olasılığı dallarında bir rassal değişken olan X için reel sayılı sürekli fonksiyondur.