İçeriğe atla

Moment (fizik)

Fizikte moment, fiziksel niceliğin mesafe ile bileşimidir. Momentler, genellikle sabit bir referans noktasına ya da eksene göre tanımlanırlar, ilgili referans noktasından ya da ekseninden belirli bir mesafede ölçülen fiziksel nicelikleri ele alırlar. Mesela bir kuvvetin momenti, o kuvvetin kendisinin ve bir eksenden uzaklığının çarpımıdır ve ilgili eksenin etrafında dönmeye sebep olur. Prensip olarak herhangi bir fiziksel nicelik, moment oluşturmak üzere bir mesafe ile bileşebilir. Sıkça kullanılan nicelikler içinde kuvvetler, kütleler ve elektrik yük dağılımları bulunmaktadır.

Detaylı anlatımı

En basit ve temel biçimiyle moment, belirli bir noktaya olan mesafenin belirli bir üst alma işlemine tabii tutulmasından sonra kuvvet, yük gibi fiziksel bir nicelikle çarpımıdır. Bu hâliyle

olur. Burada , fiziksel niceliği göstermektedir – belirli noktaya, nokta yüke ya da nokta kütleye uygulanan kuvvet gibi. Eğer nicelik sadece tek bir noktaya yoğunlaşmamışsa moment niceliğin uzaydaki yoğunluğunun integralidir:

Burada yükü, kütle ya da seçilen herhangi bir niceliğin yoğunluğunun dağılımıdır.

Daha karmaşık biçimler, mesafe ve fiziksel nicelik arasındaki açısal ilişkiyi de dikkate alır, ancak yukarıdaki denklemler bir momentin temel özelliğini, kısacası esas olan terimini veya eşleniğini, ifade etmektedirler.Bu da demektir ki, (her n değeri için) birden çok moment vardır ve moment genellikle, mesafesinin ölçüldüğü, referans noktasına bağımlıdır. Gerçi bâzı momentler için (teknik olarak, en düşük sıfır-olmayan moment), bu bağımlılık yok olur ve moment referans noktasında bağımsız hâle gelir.

n'in sahip olduğu her değer farklı momente denk gelmektedir: birinci moment, n=1 'e denk gelmektedir;ikinci moment, n=2 'e denk gelmektedir, vs. Özellikle elektrik yük dağılımları konusunda; sıfırıncı moment'e(n=0), bazen monopol(tek kutuplu) moment denir; birinci moment'e(n=1), bazen dipol(çift kutuplu) moment denir ve ikinci moment'e (n=2), bazen quadrupol(dört kutuplu) moment denir.

Örnekler

  • Elektrik dipol momenti yine "birinci moment" türündedir: birbirine zıt iki nokta yükü için veya yük yoğunluğuna sahip dağıtık bir yük için şeklinde ifade edilir.
  • Eylemsizlik momenti "ikinci moment" türündedir: bir nokta yükü için ,nokta yükü dizisi için veya yük dağılımı olan bir nesne için şeklinde ifade edilir.
  • Kuvvetin momenti veya tork, "birinci moment" türündedir: , veya, daha genel hâliyle şeklinde ifade edilir.

Çoklu momentler

Sonlu ve belirli bölge ile sınırlandırılmış bir yoğunluk fonksiyonu üzerinden örneklenecek olursa, o bölgenin dışında 1/r potansiyeli bir küresel harmonikler dizisi olarak ifade edilebilir:

katsayıları 'multipol momentler' olarak bilinirler ve şu biçimi alırlar:

Burada küresel koordinatlar olarak ifade edilirken, ise integrasyon değişkenidir. (Note: yukarıdaki denklemlerdeki işlem düzeni Jackson'ın kitabından alınmıştır.[1])

Burada elektrik yük yoğunluğunu ifade ederken, ise, bir anlamda, elektrik yükü momentinin projeksiyonları: monopol moment'tir; dipol moment'in projeksiyonlarıdır, quadrupol moment'in projeksiyonlarıdır, vb.

Çoklu momentlerin uygulamaları

Multipol genişlemesi 1/r skaler potansiyelleri için de geçerlidir, örnekleri ise elektrik potansiyeli ve yerçekimi potansiyeli'dir. Bu potansiyeller için, denklem, ilk birkaç momentin hesaplanması yoluyla; yüklerin(veya kütlelerin) sınırlandırılmış dağıtımı ile üretilmiş olan alanın gücüne yaklaşmak/yakınsamak için kullanılabilir. Yeterince büyük r değeri için, sadece monopol ve dipol momentleri ile kabul edilebilir bir yaklaşık değer elde edilebilir.Daha üst düzeyden moment hesaplanarak daha kesin bir sonuca ulaşılabilir.

Bu yöntem ayrıca 'nun bilinmeyen dağılımının özelliklerini belirlemek için de kullanılabilir. Multipol(çok kutuplu) momentlere ait ölçümler alınabilir ve esas teşkil eden dağılımın özelliklerinin çıkarılmasında kullanılabilir. Bu yöntem moleküller gibi küçük nesnelere de uygulanabilir, [2][3] ama ayrıca evrenin kendisine de uygulanmıştır,[4] buna örnek olarakyöntemin, WMAP ve Planck deneylerinde Kozmik mikrodalga arka plan ışımasını çözümlemek için kullanılması gösterilebilir.

Diğer momentler

  • Alanın ilk momenti, bir nesnenin, kayma gerilmesine karşı olan direnci ile ilgili özelliği.
  • Alanın ikinci momenti, bir nesnenin, eğilmeye ve sekmeye karşı olan direnci ile ilgili özelliği.
  • Eğilme momenti, Yapısal elementlerin(kiriş,kolon vs.) eğilmesi ile sonuçlanan bir moment'tir.
  • Elektrik dipol momenti – İki veya daha fazla yük arasındaki yük farkını ve yönünü ölçen bir dipol moment'tir. Mesela aralarında d mesafesi bulunan –q ve q yükleri arasındaki elektrik dipol momenti şu şekilde belirtilir:
  • Eylemsizlik momenti Dönme hareketi ile ilgili tartışmalarda kütle ile benzerdir. Nesnenin dönme oranındaki değişimlere karşı nesnenin gösterdiği direncin ölçümüdür.
    • Eylemsizlik polar momenti, bir nesnenin, burulmaya(torsiyon) karşı olan direnci ile ilgili özelliği.
  • Küresel multipol momentleri
  • Manyetik moment manyetik bir kaynağın yönünü ve kuvvetini ölçen bir dipol moment'tir.
  • Sismik moment, bir depremin büyüklüğünü ölçmek için kullanılan nicelik.
  • Tork: Kuvvetin momenti

Tarihi

Fizikteki moment kavramı, matematik kavramı olan momentler'den türetilmiştir.[5] Momentler prensibi, Arşimet'in keşfetmiş olduğu kaldıraçın çalışma prensibinden türetilmiştir. Arşimet nesneye uygulanan kuvvetinin momentinin, M = rF olduğunu belirtmiştir, burada F uygulanan kuvvet ve r ise uygulanan kuvvetin nesneye olan mesafesidir.

Ancak moment teriminin tarihsel evrimi ve bu terimin matematik, fizik ve mühendislik gibi bilim dallarındaki kullanımnın ne zaman başladığı belirsizdir.

Kaynakça

  1. ^ J. D. Jackson, Classical Electrodynamics, 2. baskı, Wiley, New York, (1975). p. 137
  2. ^ M.A. Spackman, "Molecular Electric Moments from X-Ray Diffraction Data", Chemical Reviews, 92 (1992), s. 1769
  3. ^ Dittrich and Jayatilaka, Reliable Measurements of Dipole Moments from Single-Crystal Diffraction Data and Assessment of an In-Crystal Enhancement, Electron Density and Chemical Bonding II, Theoretical Charge Density Studies, Stalke, D. (Ed), 2012, http://www.springer.com/978-3-642-30807-9
  4. ^ Baumann, D., TASI Lectures on Inflation, 2009, ArXiv e-prints, arXiv:0907.5424 8 Aralık 2018 tarihinde Wayback Machine sitesinde arşivlendi.
  5. ^ Robertson, D.G.E.; Caldwell, G.E.; Hamill, J.; Kamen, G.; and Whittlesey, S.N. (2004) Research Methods in Biomechanics. Champaign, IL: Human Kinetics Publ., p. 285.

Ayrıca bakınız

  • Momentumun momenti çizgisel momentum'un dönme ile ilgili benzeri/eşleniğidir.
  • Mekanik denge durumu – bir nesnenin belirli bir noktaya (pivot nokta) göre, saat yönündeki momentlerinin toplamı ile saat yönünün tersine olan momentlerinin toplamı eşit olacak şekilde ilgili nesne dengelendiğinde geçerlidir.
  • Multipol (çok kutuplu) genişlemesi

İlgili Araştırma Makaleleri

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

<span class="mw-page-title-main">Elektrik alanı</span>

Elektriksel alan, kıvıl alan, elektrik alan veya elektrik alanı, elektriksel yükü veya manyetik alanı çevreleyen uzayın bir özelliği olup, içerisinde bulunan yüklü nesnelere elektriksel güç aracılığı ile etki eder. Kavram fiziğe Michael Faraday tarafından kazandırılmıştır.

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

<span class="mw-page-title-main">Elektrostatik</span> durağan elektrik yüklerinin incelenmesi

Elektrostatik, duran veya çok yavaş hareket eden elektrik yüklerini inceleyen bir bilim dalıdır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

<span class="mw-page-title-main">Kütle merkezi</span>

Fizikte, uzaydaki ağırlığın dağılımının ağırlık merkezi, birbirlerine göre olan ağırlıkların toplamlarının sıfır olduğu noktadır. Ağırlık dağılımı, ağırlık merkezi etrafında dengelenir ve dağılan ağırlığın kütle pozisyon koordinatlarının ortalaması onun koordinatlarını tanımlar. Ağırlık merkezine göre formüle edildiği zaman mekanikte hesaplamalar basitleşir.

Φ harfiyle gösterilen Manyetik akı, toplam manyetizmanın ölçüsüdür ve bu yönüyle elektrik yükün manyetik karşılığıdır. Manyetik akı yoğunluğu ise B harfiyle gösterilir ve birim kesit alandan geçen manyetik akı miktarının ölçüsüdür.

<span class="mw-page-title-main">Klasik elektromanyetizma</span>

Klasik elektromanyetizm, klasik elektromıknatıslık ya da klasik elektrodinamik teorik fiziğin elektrik akımı ve elektriksel yükler arasındaki kuvvetlerin sonuçlarını inceleyen dalıdır. kuantum mekaniksel etkilerin ihmal edilebilir derecede küçük olmasını sağlayacak kadar büyük ölçütlü sistemler için elektromanyetik fenomenlerin mükemmel bir açıklamasını sunar.

<span class="mw-page-title-main">Liénard-Wiechert potansiyelleri</span>

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

Görüntü yük yöntemi, elektrostatikte kullanılan bir soru çözüm tekniğidir. İsimlendirmenin kökeni problemdeki sınır koşullarını bazı sanal yükler ile değiştirme yönteminden gelir.

Ewald toplamı, ismini Paul Peter Ewald'dan alır, periyodik sistemlerin, özellikle elektrostatik enerjilerin, etkileşim enerjilerini hesaplayan bir yöntemdir. Ewald toplamı Poisson toplam formülünde gerçek uzaydaki etkileşim enerjilerinin Fourier uzayındaki denk bir toplam ile değiştirilmiş toplam formülünün özel bir halidir. Bu yöntemin avantajı gerçek uzaydaki etkileşimler uzun mesafeli olduğunda Fourier uzayındaki toplamın hızlı yakınsıyor olmasıdır. Elektrostatik enerjiler kısa ve uzun mesafeli etkileşimlerden oluştukları için en verimli hesaplama etkileşim potansiyeli gerçek uzayda kısa mesafeli etkileşim toplamı ve Fourier uzayında uzun mesafeli etkileşim toplamı olarak iki parçaya ayrıldığında gerçekleşir.

Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

Bir kuadrupol veya dört kutuplu genellikle daha karmaşık bir yapının çeşitli düzenlemelerini yansıtan çok kutuplu genişlemenin bir parçasıdır. Örnekle açıklamak gerekirse, kuadrupol elektrik yükü, elektrik akımı ya da ideal formunda bulunan çekim kütlesinin birer konfigürasyon dizisidir.

Fizikte Einstein ilişkisi; 1904'te William Sutherland'in, 1905'te Albert Einstein'ın ve 1906'da Marian Smoluchowski'nin Brown hareketi üzerine yaptıkları çalışmalarında bağımsız olarak ortaya koydukları önceden beklenmedik bir bağlantıdır. Denklemin daha genel biçimi: