İçeriğe atla

Moleküler mekanik

Bu etan molekülünün bağ germe enerjisini en aza indirmek için bir kuvvet alanı kullanılır.

Moleküler mekanik moleküler sistemleri modellemek için klasik mekaniği kullanır. Born-Oppenheimer yaklaşımının geçerli olduğu varsayılır ve tüm sistemlerin potansiyel enerjisi, kuvvet alanları kullanılarak nükleer koordinatların bir fonksiyonu olarak hesaplanır. Moleküler mekanik, boyutu birkaç atom büyüklüğünde olan sistemlerden tutun da milyonlarca atomdan oluşan büyük sistemlere kadar uygulanabilir.

Tüm atomistik moleküler mekanik yöntemleri aşağıdaki özelliklere sahiptir:

  • Her atom bir parçacık olarak simüle edilir
  • Her parçacığa bir yarıçap (tipik olarak van der Waals yarıçapı), polarizasyon ve sabit bir net yük (genellikle kuantum hesaplamalarından ve/veya deneyden türetilir) atanır
  • Bağlı etkileşimler, deneysel veya hesaplanmış bağ uzunluğuna eşit bir denge mesafesine sahip yaylar olarak ele alınır.

Fonksiyonel formu

Devam çözücü ile moleküler mekanik potansiyel enerji fonksiyonu.

Kimyadaki atomlar arası potansiyel fonksiyon veya kuvvet alanı olarak adlandırılan aşağıdaki fonksiyonel soyutlama, moleküler sistemin potansiyel enerjisini (E) belirli bir konformasyonda bireysel enerji terimlerinin toplamı olarak hesaplar.

kovalent ve kovalent olmayan bileşenleri aşağıdaki özetlerle verilir:

Potansiyel fonksiyonun veya kuvvet alanının tam fonksiyonel formu, kullanılan özel simülasyon programına bağlıdır.

Uygulama alanları

Moleküler mekaniğin ana kullanımı moleküler dinamik alanındadır. Moleküler dinamik, her bir parçacığa etkiyen kuvvetleri hesaplamak için kuvvet alanını ve parçacıkların dinamiklerini modellemek ve yörüngeleri tahmin etmek için uygun bir entegratörü kullanır. Yeterli örnekleme göz önüne alındığında ve ergodik hipoteze tabi olarak moleküler dinamik yörüngeler, bir sistemin termodinamik parametreleri veya reaksiyon hızları ve mekanizmaları gibi kinetik özelliklerini tahmin etmek için kullanılabilir.

Moleküler mekaniğin bir başka uygulaması enerji minimizasyonu olup, kuvvet alanı bir optimizasyon kriteri olarak kullanılır. Bu yöntem, lokal enerji minimumunun moleküler yapısını bulmak için uygun bir algoritma (örneğin en dik iniş) kullanır. Bu minimumlar, molekülün (seçilen kuvvet alanında) kararlı konformerlerine karşılık gelir ve moleküler hareket, bu kararlı konformerler çevresindeki titreşimler ve aralarındaki dönüşümler olarak modellenebilir. Bu nedenle, global enerji minimumunu bulmak için küresel enerji optimizasyonuyla birlikte yerel enerji minimizasyon yöntemlerini bulmak (ve diğer düşük enerji durumlarını) yaygındır. Sonlu sıcaklıkta, molekül zamanının çoğunu düşük enerji seviyelerinde (minimumlarda) geçirir. Bundan dolayı, bu molekülün minimumlardaki hali molekülerin özelliklerinin belirlenmesinde baskındır. Global optimizasyon, benzetilmiş tavlama, Metropolis algoritması ve diğer Monte Carlo yöntemleri kullanılarak veya farklı deterministik ayrık veya sürekli optimizasyon yöntemleri kullanılarak gerçekleştirilebilir. Kuvvet alanı, serbest enerjinin sadece entalpik bileşenini temsil ederken (ve enerji minimizasyonu sırasında sadece bu bileşen dahil edilir), normal mod analizi gibi ek yöntemler kullanılarak entropik bileşeni dahil etmek de mümkündür.

Bu zamana kadar moleküler mekanik potansiyel enerji fonksiyonları bağlanma sabitleri, protein katlama kinetiği, proton dengesi, aktif bölge koordinatlarını hesaplamak ve bağlanma yerlerini tasarlamak için kullanılmıştır.

Yazılım paketleri

Bu sınırlı bir listedir; daha birçok paket mevcuttur.

*
  • Abalone
  • ACEMD - GPU MD[1]
  • AMBER
  • Ascalaph Designer[2]
  • BOSS
  • CHARMM
  • COSMOS[3]
  • CytoSolve[4]
  • Ghemical
  • GROMACS
  • GROMOS
  • HyperChem
  • Internal Coordinate Mechanics (ICM)
  • LAMMPS
  • MacroModel
  • MDynaMix
  • Molecular Operating Environment (MOE)
  • NAMD
  • Q
  • Q-Chem
  • Spartan
  • StruMM3D (STR3DI32)[5]
  • Tinker
  • X-PLOR
  • Yasara
  • Zodiac[6]

Ayrıca bakınız

  • Moleküler grafikler
  • Moleküler dinamik
  • Molekül editörü
  • Kuvvet alanı (kimya)
  • Kuvvet alanı uygulamalarının karşılaştırılması
  • Moleküler tasarım yazılımı
  • GPU'da moleküler modelleme
  • Moleküler mekanik modelleme için yazılımların karşılaştırılması
  • Monte Carlo moleküler modellemesi için yazılım listesi

Notlar

  1. ^ "ACEMD - GPU MD". 21 Kasım 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Kasım 2008. 
  2. ^ "Ascalaph". 24 Şubat 2010 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Ocak 2020. 
  3. ^ "COSMOS". 30 Aralık 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Ocak 2020. 
  4. ^ "CytoSolve". 11 Ekim 2010 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Ocak 2020. 
  5. ^ "StruMM3D (STR3DI32)". 1 Aralık 2009 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Ocak 2020. 
  6. ^ "Zodiac". 16 Aralık 2009 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Ocak 2020. 

Kaynakça

  • Allinger, N.L.; Burkert, Ulrich, (Ed.) (1982). Molecular Mechanics. An American Chemical Society Publication. ISBN 978-0-8412-0885-8. 
  • Box VG (March 1997). "The Molecular Mechanics of Quantized Valence Bonds". J Mol Model. 3 (3): 124–41. doi:10.1007/s008940050026.
  • Box VG (12 November 1998). "The anomeric effect of monosaccharides and their derivatives. Insights from the new QVBMM molecular mechanics force field". Heterocycles. 48 (11): 2389–417. doi:10.3987/REV-98-504.
  • Box VG (2004). "Stereo-electronic effects in polynucleotides and their double helices". J Mol Struct. 689 (1–2): 33–41. Bibcode:2004JMoSt.689...33B. doi:10.1016/j.molstruc.2003.10.019.
  • Becker, O.M. (2001). Computational biochemistry and biophysics. New York, N.Y.: Marcel Dekker. ISBN 978-0-8247-0455-1. 
  • Mackerell AD (October 2004). "Empirical force fields for biological macromolecules: overview and issues". J Comput Chem. 25 (13): 1584–604. doi:10.1002/jcc.20082. PMID 15264253.
  • Schlick, T. (2002). Molecular modeling and simulation: an interdisciplinary guide. Berlin: Springer. ISBN 978-0-387-95404-2. 
  • K. I. Ramachandran; Gopakumar Deepa; Krishnan Namboori (13 Haziran 2008). Computational Chemistry and Molecular Modeling (İngilizce). Springer Science & Business Media. ISBN 978-3-540-77302-3. 9 Ağustos 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Ocak 2020. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Enerji</span> bir sistemin iş yapabilme yeteneğinin ölçüsü

Fizikte enerji, bir cisime veya fiziksel bir sisteme aktarılan, işin performansında ve ısı ve ışık biçiminde tanınabilen niceliksel özelliktir. Enerji korunan bir miktardır; Enerjinin korunumu yasası, enerjinin istenen biçime dönüştürülebileceğini ancak yaratılamayacağını veya yok edilemeyeceğini belirtir. Uluslararası Birimler Sisteminde (SI) enerjinin ölçü birimi joule'dür (J).

<span class="mw-page-title-main">Mekanik</span> kuvvetlere veya yer değiştirmelere maruz kalan fiziksel cisimlerle ilgilenen bilim

Mekanik, fiziğin fiziksel nesnelerin hareketleriyle, özellikle kuvvet, madde ve hareket arasındaki ilişkilerle ilgili alanıdır. Nesnelere uygulanan kuvvetler yer değiştirmeler veya bir nesnenin çevresine göre konumunda değişikliklerle sonuçlanır. Fizik'in bu dalının kökenleri Antik Yunanistan'da Aristoteles ve Arşimet'in yazılarında bulunur.. Erken modern dönem sırasında, Galileo, Kepler ve Newton gibi bilim adamları şimdiki klasik mekaniğin temellerini attılar. Klasik mekanik, duran veya ışık hızından çok daha düşük hızlarla hareket eden cisimlerle ilgili klasik fizikin bir dalıdır. Kuantum aleminde olmayan cisimlerin hareketini ve üzerindeki kuvvetleri inceleyen bilim dalı olarak da tanımlanabilir. Alan bugün kuantum teorisi açısından daha az anlaşılmıştır.

<span class="mw-page-title-main">Kinetik enerji</span> bir cismin harekiyle oluşan enerji

Kinetik enerji, fiziksel bir cismin hareketinden dolayı sahip olduğu enerjidir.

<span class="mw-page-title-main">John Lennard-Jones</span> İngiliz matematikçi ve fizikiçi

Sör John Edward Lennard-Jones İngiliz bir matematikçi ve Bristol Üniversitesi'nde teorik fizik ve ardından Cambridge Üniversitesi'nde teorik bilim profesörü idi. Modern hesaplamalı kimyanın, günümüz sayısal kimya alanının kurucusu olarak kabul edilebilir.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

<span class="mw-page-title-main">Moleküler tanıma</span>

Moleküler tanıma, iki veya daha çok molekül arasında kovalent olmayan bağlanma yoluyla spesifik etkileşime değinmek için kullanılan bir terimdir. Moleküler tanımada konak ve konuk moleküler tamamlayıcılık gösterirler.

<span class="mw-page-title-main">Moleküler makine</span>

Moleküler makine veya nano makine, belirli uyaranlara (input/girdi) yanıt olarak yarı-mekanik hareketler (output/çıktı) üreten moleküler bileşenlerinin herhangi ayrık bir sayısıdır. Moleküler makine ifadesi çoğunlukla, daha genel olarak sadece makroskobik seviyede meydana gelen işlevleri taklit eden moleküller için kullanılır. Bunun yanında moleküler makineler terimi, moleküler çevirici inşa etme amacı güden ve son derece karmaşık bir dizi moleküler makinelerin mevcut olduğunun ileri sürüldüğü nanoteknoloji biliminde de yaygın olarak kullanılır. Moleküler makineler, sentetik ve biyolojik olarak iki geniş kategoriye ayrılabilir.

<span class="mw-page-title-main">Van der Waals kuvveti</span>

Moleküler fizik ve kimyada Van der Waals kuvveti veya Van der Waals etkileşimi, atomlar veya moleküller arasındaki mesafeye bağlı bir etkileşimdir. İyonik veya kovalent bağların aksine, bu çekimler kimyasal elektronik bir bağdan kaynaklanmaz; nispeten zayıftırlar ve bu nedenle bozulmaya daha duyarlıdırlar. Van der Waals kuvveti, etkileşen moleküller arasındaki uzak mesafelerde hızla yok olur.

Moleküller arası kuvvet, komşu parçacıklar arasında etkili çekim veya itme kuvvetidir. Molekülleri bir arada tutan iç kuvvetlere kıyasla daha zayıftır. Örneğin HCI moleküllerinin içinde bulunan kovalent bağ, birbirine yeterince yakın komşu moleküller arasında mevcut olan kuvvetlerden daha güçlüdür.

<span class="mw-page-title-main">Moleküler dinamik</span>

Moleküler dinamik (MD), atomların ve moleküllerin fiziksel hareketlerini incelemek için bir bilgisayar simülasyon yöntemidir. Atomların ve moleküllerin sabit bir süre boyunca etkileşime girmesine izin verilir ve bu da sistemin dinamik evrimi hakkında bilgi verir. En yaygın versiyonda, atomların ve moleküllerin yörüngeleri, parçacıklar ve bunların potansiyel enerjileri arasındaki kuvvetlerin çoğu zaman atomlararası potansiyeller veya moleküler mekanik kuvvet alanları kullanılarak hesaplandığı, etkileşen parçacıkların bir sistemi için Newton'un hareket denklemlerinin sayısal olarak çözülmesiyle belirlenir. Metot ilk olarak 1950'lerin sonunda teorik fizik alanında geliştirildi, ancak günümüzde çoğunlukla kimyasal fizik, malzeme bilimi ve biyomoleküllerin modellenmesinde uygulanmaktadır.

Atomik, moleküler ve optik fizik, bir ya da birkaç atomun ölçeğinde, madde-madde ve ışık-madde etkileşimi çalışmadır ve enerji, birkaç elektron voltları etrafında ölçeklenir. Üç alanla yakından ilişkilidir. AMO teorisi, klasik, yarı klasik ve kuantum işlemlerini kapsar. Tipik olarak, teori ve emisyon uygulamaları, elektromanyetik yayılım ve emilme, spektroskopi analizi, lazer ve mazerlerin kuşağı ve genel olarak maddenin optik özellikleri, uyarılmış atom ve moleküllerden, bu kategorilere ayrılır.

<span class="mw-page-title-main">Lennard-Jones potansiyeli</span>

Lennard-Jones potansiyeli bağlı olmayan iki atom veya molekülün etkileşiminin potansiyel enerjisini atomlar veya moleküller arasındaki mesafeyi temel alarak ifade eden matematiksel bir modeldir. L-J potansiyeli moleküler simülasyon alanında en çok kullanılan moleküller arası potansiyeldir. Bu moleküller arası potansiyelin bir formu ilk olarak 1924'te John Lennard-Jones tarafından önerildi. L-J potansiyelinin en yaygın gösterimi şu şekildedir.

Hesaplamalı kimya, kimya problemlerini çözmeye yardımcı olmak için bilgisayar simülasyonunu kullanan bir kimya dalıdır. Moleküllerin, katıların yapı ve özelliklerini hesaplamak için verimli bilgisayar programlarına dahil edilmiş teorik kimya yöntemlerini kullanır. Bu yöntemlerin kullanılmasının nedeni, hidrojen moleküler iyonu ile ilgili nispeten yeni sonuçlar dışında, kuantum çok-gövdeli(many-body) problemlerin analitik olarak çözülemez oluşudur. Hesaplama sonuçları normal olarak kimyasal deneylerle elde edilen bilgileri tamamlarken, bazı durumlarda gözlemlenmeyen kimyasal olayları da tahmin edebilmektedir. Yeni ilaç ve materyallerin tasarımında yaygın olarak kullanılmaktadır.

Kuantum kimyası bilgisayar programları, kuantum kimyası metodlarını uygulamak için bilgisayarlı kimyada kullanılır. Çoğu program, Hartree-Fock (HF) ve bazı post Hartree-Fock yöntemlerini içerir ve ayrıca yoğunluk fonksiyonları teorisi (DFT), moleküler mekanik veya yarı-ampirik kuantum kimyası metotlarını da içerebilirler. Bahsi geçen programlar arasında açık kaynaklı ve ticari yazılımlar bulunur. Bunların çoğu büyüktür, çoğu zaman birkaç ayrı program içerir ve uzun yıllar boyunca geliştirilmiştir.

<span class="mw-page-title-main">Spartan (kimya yazılımı)</span>

Spartan, Wavefunction'ın moleküler modelleme ve bilgisayarlı kimya uygulamasıdır. Moleküler mekanik, yarı-ampirik yöntemler, ab initio modeller, yoğunluklu fonksiyonel modeller, post Hartree-Fock modeller, G3 (MP2) ve T1 içeren termokimyasal tarifler için kodlar içerir.

<span class="mw-page-title-main">Moleküler modelleme</span> Fiziksel simülasyonlarla kimyasal özellikleri keşfetme

Moleküler modelleme, moleküllerin davranışını modellemek veya taklit etmek için kullanılan teorik ve bilgisayarlı tüm yöntemleri kapsar. Bu yöntemler, küçük kimya sistemlerinden büyük biyolojik moleküllere ve malzeme gruplarına kadar değişen moleküler sistemleri incelemek için bilgisayarlı kimya, ilaç tasarımı, bilgisayarlı biyoloji ve malzeme bilimi alanlarında kullanılmaktadır. En basit hesaplamalar elle yapılabilir, ancak kaçınılmaz olarak makul büyüklükteki herhangi bir sistemin moleküler modellemesini bilgisayarların yapması gerekir. Moleküler modelleme yöntemlerinin ortak özelliği, moleküler sistemlerin atom düzeyinde tanımlanmasıdır. Bu, atomları en küçük bireysel birim olarak muamele edilmesini içerebilir veya protonları ve nötronları kuarkları, kuarkları, gluonlarıyla beraber ve elektronları da fotonlarıyla beraber açıkça modellemeyi içerebilir.

<span class="mw-page-title-main">CP2K</span>

CP2K, katı hal, sıvı, moleküler ve biyolojik sistemlerin atomistik simülasyonlarını gerçekleştirmek için Fortran 2003'te yazılan serbestçe kullanılabilen (GPL) bir programdır.

<span class="mw-page-title-main">Atomlararası potansiyel</span>

Atomlar arası potansiyeller, uzayda belirli pozisyonlara sahip atomlardan oluşan bir atom sisteminin potansiyel enerjisini hesaplamak amaçlı kullanılan matematiksel fonksiyonlardır. Atomlar-arası potansiyeller, kimya, moleküler fizik ve malzeme fiziğindeki moleküler mekanik ve moleküler dinamik simülasyonlarının fiziksel temeli olarak çokça kullanılırlar. Bazen kohezyon, termal genleşme ve malzemelerin elastik özellikleri gibi etkilerle bağlantılı olarak kullanılmaktadırlar.

Bu liste, nükleik asit simülasyonları için kullanılan bilgisayar programlarının bir listesidir.

<span class="mw-page-title-main">Çapraz moleküler ışın</span>

Çapraz moleküler ışın deneyleri, kimyasal reaksiyonun dinamiklerini incelemek için iki atom veya molekül ışınının çarpıştığı kimyasal deneylerdir ve bireysel reaktif çarpışmaları tespit edebilir.