İçeriğe atla

Mohorovičić süreksizliği

Yerkabuğu ve manto, Kabuğun tabanı ile en üstteki katı manto arasındaki Moho süreksizliği

Mohorovičić süreksizliği genellikle Moho olarak adlandırılır,[1] Dünya'nın kabuğu ve manto arasındaki sınırdır. Değişen kaya yoğunluklarından geçerken sismolojik dalgaların hızındaki belirgin değişiklikle tanımlanır.[2]

Şekilde gösterildiği gibi Moho, okyanus deniz tabanının altında nispeten sabit ortalama 10 km derinliğe sahiptir, ancak kıta kara kütlelerinin 70 km altında değişebilir.

Moho neredeyse tamamen litosfer içinde yer alır.[3] Sadece okyanus ortası sırtların altında litosfer-astenosfer sınırını tanımlar. Mohoroviçiç süreksizliği okyanus tabanının 5 ila 10 kilometre (3-6 mi) altında ve tipik kıta kabuklarının 20 ila 90 kilometre (10 ila 60 mi) altında, ortalama 35 kilometre (22 mi) ile. Ünlü Hırvat sismolog Andrija Mohoroviçiç 'in adını taşıyan Moho hem okyanus kabuğunu hem de kıta kabuğunu altta yatan mantodan ayırıyor. Mohoroviçiç süreksizliği ilk olarak 1909'da Mohoroviçiç tarafından, sığ odaklı depremlerden sismogramların Dünya'nın yüzeyine yakın bir yol izleyen diğerinin yüksek bir şekilde kırıldığını gözlemlediğinde görüldü. Hız ortamı.[4]

Doğa ve sismoloji

Bir P dalgasının iki yolu, biri doğrudan ve biri Moho'yu geçerken kırıldı.

Ordovician ofiyolit Gros Morne Milli Parkı, Newfoundland. Ordovisiyen Moho'yu oluşturan bu kaya yüzeye maruz kalmaktadır.

Moho, kompozisyonun Dünya'nın kayalık dış kabuğu ile daha plastik manto arasındaki geçişi işaret ediyor. Moho'nun hemen üstünde, birincil sismik dalgaların (P dalgaları) hızları bazalt (6.7-7,2 km / s) ile aynıdır ve altında peridotit veya dünit (7.6-8,6 km / s) ile aynıdır.[5] Yaklaşık 1 km / s'lik bu artış, dalgalar Dünya'dan geçerken belirgin bir malzeme değişikliğine karşılık gelir ve genellikle Dünya kabuğunun alt sınırı olarak kabul edilir.[6] Moho, 500 metreye kadar bir geçiş bölgesi ile karakterize edilir.[7] Antik Moho bölgeleri, dünyadaki birçok ofiyolitte yeryüzüne maruz kalmaktadır.[8]

Tarihi

Hırvat sismolog Andrija Mohorovičić, ilk olarak Moho'yu keşfetme ve tanımlama konusunda bilgilidir.[9] 1909'da Zagreb'deki yerel bir depremden gelen verileri incelerken, depremin odağından yayılan iki ayrı P-dalgası ve S-dalgası kümesini gözlemledi. Mohorovičić, depremlerin neden olduğu dalgaların, onları taşıyan malzemenin yoğunluğuyla orantılı hızlarda Seyahat ettiğini biliyordu. Bu bilginin bir sonucu olarak, ikinci dalga kümesinin ancak yerkabuğundaki yoğunluğun keskin bir geçişinden kaynaklanabileceğini ve bu da dalga hızındaki bu kadar dramatik bir değişimi hesaba katabileceğini teorize etti. Depremden gelen hız verilerini kullanarak, Moho'nun derinliğini daha sonra gelecekteki sismolojik çalışmalar tarafından desteklenen yaklaşık 54 km olarak hesaplayabildi.

Moho, bir yüzyılı aşkın bir süredir jeoloji ve yer bilimi alanlarında büyük bir rol oynamıştır. Moho'nun kırılma doğasını ve P dalgalarının hızını nasıl etkilediğini gözlemleyerek, bilim adamları Dünya'nın kompozisyonu hakkında teorize edebildiler. Bu erken çalışmalar modern sismolojiye yol açtı.[10]

1960'ların başlarında, Mohole Projesi, derin okyanus bölgelerinden Moho'ya sondaj girişimi oldu.[11] derin okyanus sondajı kurulmasındaki ilk başarıdan sonra, proje siyasi ve bilimsel muhalefet, kötü yönetim ve maliyet aşımlarından muzdaripti ve 1966'da iptal edildi.[12]

Arama

Sondajla süreksizliğe ulaşmak önemli bir bilimsel amaç olmaya devam etmektedir. Kola Enstitüsündeki Sovyet bilim adamları 1989'da hedefi takip etti. 15 yıl sonra projeyi terk etmeden önce dünyanın en derin deliği olan 12,260 metre (40.220 ft) derinliğe ulaştılar.[13] bir öneri, kendisini Moho süreksizliğine itebilen ve Dünya'nın yakınında ve üst mantoda keşfedebilen ağır bir tungsten iğnesi olan Kaya eritme radyonüklid ile çalışan bir kapsül olarak düşünmektedir.[14] Japon projesi Chikyu Hakken ("Dünya keşfi") Ayrıca bu genel alanda entegre okyanus Sondaj programı (IODP) için inşa edilen sondaj gemisi Chikyū ile keşfetmeyi amaçlamaktadır.

Sondaj gemisi JOİDES kararının 2015'in sonlarında Sri Lanka'daki Colombo'dan yelken açması ve güneybatı Hint Okyanusu'ndaki güneybatı Hint sırtındaki umut verici bir yer olan Atlantis Bank'a gitmesi için çağrıda bulunan planlar, ilk delik deliğini yaklaşık 1.5 kilometre derinliğe kadar delmeye çalışmak.[15] girişim 1,3 km'ye bile ulaşmadı, ancak araştırmacılar daha sonraki bir tarihte araştırmalarını ilerletmeyi umuyorlar.[16]

Kaynakça

  1. ^ Mangold, Max (2005). Aussprachewörterbuch (in German) (6th ed.). Mannheim: Dudenverlag. p. 559. ISBN 9783411040667.
  2. ^ Rudnick, R. L.; Gao, S. (2003-01-01), Holland, Heinrich D.; Turekian, Karl K. (eds.), "3.01 - Composition of the Continental Crust", Treatise on Geochemistry, Pergamon, pp. 1–64, doi:10.1016/b0-08-043751-6/03016-4, ISBN 978-0-08-043751-4, retrieved 2019-11-21
  3. ^ James Stewart Monroe; Reed Wicander (2008). The changing Earth: exploring geology and evolution (5th ed.). Cengage Learning. p. 216. ISBN 978-0-495-55480-6.
  4. ^ Andrew McLeish (1992). Geological science (2nd ed.). Thomas Nelson & Sons. p. 122. ISBN 978-0-17-448221-5.
  5. ^ RB Cathcart & MM Şirković (2006). Viorel Badescu; Richard Brook Cathcart ve Roelof D Schuiling (ed.). Makro mühendislik: gelecek için bir meydan okuma . Springer. s. 169. ISBN 978-1-4020-3739-9.
  6. ^ Rudnick, R.L.; Gao, S. (2003), "Composition of the Continental Crust", Treatise on Geochemistry, Elsevier, pp. 1–64, doi:10.1016/b0-08-043751-6/03016-4, ISBN 978-0-08-043751-4
  7. ^ D.P. McKenzie - The Mohorovičić Discontinuity
  8. ^ Korenaga, Jun; Kelemen, Peter B. (1997-12-10). "Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: Implications for magma transport in the oceanic lower crust". Journal of Geophysical Research: Solid Earth. 102 (B12): 27729–27749. doi:10.1029/97JB02604.
  9. ^ Braile, L. W.; Chiangl, C. S. (1986), Barazangi, Muawia; Brown, Larry (eds.), "The continental Mohorovičič Discontinuity: Results from near-vertical and wide-angle seismic reflection studies", Geodynamics Series, American Geophysical Union, 13, pp. 257–272,
  10. ^ Prodehl, Claus; Mooney, Walter D. (2012). Exploring the Earth's Crust—History and Results of Controlled-Source Seismology.
  11. ^ Winterer, Edward L. (2000). "Scientific Ocean Drilling, from AMSOC to COMPOST". 50 Years of Ocean Discovery: National Science Foundation 1950-2000. Washington, D.C.: National Academies Press (US).
  12. ^ Mohole, LOCO, CORE, and JOIDES: A brief chronology Betty Shor, The Scripps Institution of Oceanography, August 1978, 7 pp. Access date 25 June 2019.
  13. ^ "How the Soviets Drilled the Deepest Hole in the World". Wired. 2008-08-25. Retrieved 2008-08-26
  14. ^ Ozhovan, M.; F. Gibb; P. Poluektov & E. Emets (August 2005). "Probing of the Interior Layers of the Earth with Self-Sinking Capsules". Atomic Energy. 99 (2): 556–562. doi:10.1007/s10512-005-0246-y
  15. ^ Witze, Alexandra (December 2015). "Quest to drill into Earth's mantle restarts". Nature News. 528 (7580): 16–17. Bibcode:2015Natur.528...16W. doi:10.1038/528016a. PMID 26632566
  16. ^ Kavanagh, Lucas (2016-01-27). "Looking Back on Expedition 360". JOIDES Resolution. Archived from the original on 2016-07-09. Retrieved 2016-09-21. We may not have made it to our goal of 1300 m, but we did drill the deepest ever single-leg hole into hard rock (789 m), which is currently the 5th deepest ever drilled into the hard ocean crust. We also obtained both the longest (2.85 m) and widest (18 cm) single pieces of hard rock ever recovered by the International Ocean Discovery Program and its predecessors! [...] Our hopes are high to return to this site in the not too distant future.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Deprem</span> yer kabuğunda beklenmedik anda ortaya çıkan enerji atımı

Deprem, yer sarsıntısı, seizma veya zelzele, yer kabuğunda beklenmedik bir anda ortaya çıkan enerji sonucunda meydana gelen sismik dalgalanmalar ve bu dalgaların yeryüzünü sarsması olayıdır. Sismik aktivite ile kastedilen, meydana geldiği alandaki depremin frekansı, türü ve büyüklüğüdür. Depremler sismograf ile ölçülür. Bu olayları inceleyen bilim dalına da sismoloji denir. Depremin büyüklüğü Moment magnitüd ölçeği ile belirlenir. Bu ölçeğe göre 3 ve altı büyüklükteki depremler genelde hissedilmezken 7 ve üstü büyüklükteki depremler yıkıcı olabilir. Sarsıntının şiddeti Mercalli şiddet ölçeği ile ölçülür. Depremin meydana geldiği noktanın derinliği de yıkım kuvveti üzerinde etkilidir, bu sebepten yeryüzüne yakın noktalarda gerçekleşen depremler daha çok hasara neden olmaktadır.

<span class="mw-page-title-main">Dünya'nın yapısı</span> dünyanın iç yapısını anlatan madde

Dünya'nın iç yapısı: bir dış silikat katı kabuk, oldukça viskoz bir astenosfer ve manto, mantodan çok daha az viskoz olan sıvı bir dış çekirdek ve katı bir iç çekirdek olmak üzere küresel kabuklarda katmanlıdır. Dünya'nın iç yapısının bilimsel olarak anlaşılması, topografya ve batimetri gözlemlerine, dışa doğru kaya gözlemlerine, volkanlar veya volkanik aktiviteyle yüzeye getirilen örneklere, Dünya'dan geçen sismik dalgaların analizine, Dünya'nın yerçekimi ve manyetik alanlarına, Dünya'nın derin iç kısmının karakteristiği basınç ve sıcaklıklardaki kristal katılarla deneyler.

<span class="mw-page-title-main">Levha tektoniği</span> Litosferin yapısını inceleyen jeoloji dalı

Levha tektoniği } Dünya'nın litosfer'inin yaklaşık 3,4 milyar yıl öncesinden beri yavaş hareket eden birçok büyük tektonik levha içerdiği düşünülen genel kabul görmüş bilimsel bir teoridir.

<span class="mw-page-title-main">Dünya'nın yerkabuğu</span> Dünyanın dış tabakası

Yer kabuğu, taş küre veya litosfer, Yerküre'nin en dış kısmında bulunan yapıdır.

Manto, yer kabuğu ile çekirdek arasında yer alan, derinliğe göre değişen ısıya sahip bir yer katmanıdır. Mantonun üst kesimi yüksek sıcaklık ve basınçtan dolayı plastikimsi özellik gösterir. Alt kesimleri ise sıvı halde bulunur. Bu nedenle mantoda sürekli olarak alçalıcı-yükselici hareketler görülür. Kalınlığı 2.860 kilometreye yakındır. Ultra bazik kayaç veya ultramafik kayaçlardan oluşur. Dünya'nın en kalın katmanıdır. Ağır olup yoğunluğu 3,5–6 g/cm³ arasında bulunur. Bazı gezegenler, bazı asteroitler ve bazı gezegen uyduları mantoya sahiptir. Sıcaklığı 1900-3700 °C arasında değişir. Yapısında silisyum, magnezyum, nikel ve demir bulunmaktadır. Okyanus ortası sırtlarında oluşan kısmi manto erimesi okyanusal kabuğu, Yitim zonlarında meydana gelen kısmi manto erimeleri ise kıtasal kabuğu oluşturmaktadır.

Yer çekirdeği, Dünya'nın en iç kısmını oluşturur. En kalın yer katmanıdır (geosfer).

<span class="mw-page-title-main">Dünya</span> Güneş Sisteminde Güneşe en yakın üçüncü gezegen

Dünya veya Yerküre, Güneş Sistemi'nde Güneş'e en yakın üçüncü gezegen olup şu an için üzerinde yaşam ve sıvı su barındırdığı kesin olarak bilinen tek astronomik cisimdir. Radyometrik tarihleme ve diğer kanıtlara göre 4,55 milyar yıldan fazla bir süre önce oluşmuştur. Dünya'nın yer çekimi, uzaydaki diğer nesnelerle, özellikle Güneş'le ve tek doğal uydusu Ay'la etkileşime girer. Dünya'nın Güneş'in etrafındaki yörüngesi, 365,256 güneş günü, yani bir yıldız yılı sürer. Bu süre içerisinde Dünya, kendi ekseni etrafında 366,265 kez döner.

<span class="mw-page-title-main">Tektonik</span>

Tektonik, yer kabuğunun yapısını, özelliklerini ve zaman içindeki gelişimini kontrol eden süreçtir. Özellikle, dağ inşası süreçlerini, kratonlar olarak bilinen kıtaların güçlü, eski çekirdeklerinin büyümesini, davranışını ve Dünya'nın dış kabuğunu oluşturan nispeten sert plakaların birbirleriyle etkileşme yollarını açıklar. Tektonik ayrıca küresel nüfusu doğrudan etkileyen deprem ve volkanik kuşakları anlamak için bir çevre sunmaktadır. Tektonik çalışmalar, fosil yakıtları ve metalik ve metalik olmayan kaynakların maden yataklarını arayan ekonomik jeologlar için kılavuz olarak önemlidir. Erozyon kalıplarını ve diğer Dünya yüzey özelliklerini açıklamak için jeomorfologlar için tektonik prensiplerin anlaşılması şarttır.

<span class="mw-page-title-main">Sismik dalga</span> Dünyanın katmanları boyunca dolaşan sismik, volkanik veya patlayıcı enerji

Sismik dalga, Dünya veya başka gezegen gibi bir cisim içinden geçen akustik enerji dalga'sıdır. Deprem, volkanik patlama, magma hareketinden, büyük heyelan ve alçak frekanslı akustik enerji üreten büyük insan yapımı bir patlama'dan kaynaklanabilir.

<span class="mw-page-title-main">Wiechert-Gutenberg süreksizliği</span> yeryüzünden 2900 km derinlikte yer alan süreksizlik zonu

Wiechert-Gutenberg süreksizliği yeryüzünden 2900 km derinlikte yer alan süreksizlik zonu. Bu zonda cisimlerin yoğunluğu artar, P- dalgalarının hızı düşer, S-dalgaları sınır bölgesini geçemez. Bu zon, çekirdek-manto sınırı olarak da bilinir.

  1. Kıtasal kabuk
  2. Okyanusal kabuk
  3. Üst manto
  4. Alt manto
  5. Dış çekirdek
  6. İç çekirdek
A. Mohorovičić süreksizliği
B. Wiechert-Gutenberg süreksizliği
C. Lehmann süreksizliği

Prekambriyen, yerküre tarihinin mevcut Fanerozoyik Üst Zaman'dan önce gelen en eski bölümüdür. Prekambriyen, Fanerozoyik Üst Zaman'ın ilk dönemi olan Kambriyen'den önce geldiği için bu şekilde adlandırılmıştır. Kambriyen adlandırması ise bu çağa ait kayaçların ilk incelendiği yer olan Galler'in Latince ismi Cambria'dan gelmektedir. Prekambriyen, yerkürenin jeolojik zamanının %88'ini kapsar.

<span class="mw-page-title-main">Kıta kayması</span> Kıtaların bir zamanlar parçalanan ve şimdi yavaşça birbirinden uzaklaşan büyük bir kara alanı olduğu kuramı

Kıta Kayması Teorisi, 1912'de Alman meteorolog Alfred Wegener tarafından ortaya konulmuş olan ve kıtaların hareket halinde olduğunu ve bugünkü durumunu böylece aldığını öne süren bir teoridir. Kıta kayması, kıtaların birbirlerine ve okyanus havzalarına göre girmiş olduğu büyük ölçekli yatay hareketlerdir.

<span class="mw-page-title-main">Kıtasal çarpışma</span>

Kıtasal çarpışma Dünya'nın yakınsak sınırlarında meydana gelen bir levha tektoniğidir. Kıtasal çarpışma yitim zonu üzerinde olan bir olaydır, bu çarpışma süreci boyunca yitim bölgesi yok edilir ve bu sayede dağlar oluşur, iki kıta bir araya gelir. Kıtasal çarpışma sadece; bu gezegende bilinen farklı kabukların, okyanus ve kıta arasında, nasıl davrandığını gösteren ilginç bir örnektir.

<span class="mw-page-title-main">Okyanus ortası sırtı</span>

Okyanus ortası sırtı; levha tektoniği tarafından oluşturulan omurgası boyunca uzanan tipik bir vadi olarak bilinen ve çeşitli sıra dağları içeren su altı dağ sistemi için kullanılan genel bir terimdir. Bu tip okyanussal sırtlar deniz tabanı yayılmasına neden olan okyanussal yayılma merkezi olarak bilinen bir karakteristiktir. Okyanussal kabuk, lav olarak yükselme, soğutma üzerine yeni bir kabuk oluşturma, okyanus kabuğundaki lineer bir zayıflıkta magma olarak mantoda yükselmesine neden olan konveksiyonel akımlardan dolayı deniz tabanı yükselmesi ile oluşur. Bu okyanus ortası sırtı sonuç olarak farklı iki tektonik plakayı birbirinden ayırır.

<span class="mw-page-title-main">Astenosfer</span> mantonun yer kabuğuna yakın olan üst kısmı

Astenosfer kelimesinin kökeni Antik Yunan'dan gelmektedir. Mekanik olarak zayıf olduğundan ἀσθενός [asthenos] yani güçsüz kelimesinden türetilmiştir. Mekanik olarak zayıf ve üst mantoda ki sünek bölgedir. Litosferin altında, yüzeyin yaklaşık 80 ila 200 km derinliklerinde bulunur. Litosfer-astenosfer sınırı genellikle LAB olarak adlandırılır.

<span class="mw-page-title-main">Yitim zonu</span> jeolojik bir süreçt

Yitim zonu, bir plakanın diğerinin altında hareket ettiği ve mantoda yüksek yerçekimi potansiyel enerjisi nedeniyle batmaya zorlandığı tektonik plakaların konverjan sınırlarında gerçekleşen jeolojik bir süreçtir. Bu işlemin gerçekleştiği bölgeler, batma bölgeleri olarak bilinir. Yitim oranları tipik olarak yılda santimetre cinsinden ölçülür, ortalama konverjan oranı çoğu plaka sınırı boyunca yılda yaklaşık iki ila sekiz santimetredir.

<span class="mw-page-title-main">Okyanusal kabuk</span>

Okyanus tabanlarında magmadan gelen malzemenin katılaşması ile oluşan kabuk. Okyanusal kabuk dünyanın bir parçası olan litosfer kabuğunun üzerinde bulunan okyanus havzalarıdır. Mafik kayaçlardan ya da demir ve magnezyum açısından zengin olan sima dan oluşur.

<span class="mw-page-title-main">Litosfer</span> Dünyanın kabuklaşmış ve katılaşmış dış yüzeyidir

Litosfer, eski Yunancada "kayalık" Hintçede "küre" anlamlarına gelir. Tanım olarak ise, sert ve mekanik özellikleri ile tanımlanan karasal tipte bir gezegenin veya doğal uydunun en dış kabuğudur. Litosfer, kabuk ve üst mantonun binlerce yıl veya daha büyük zaman ölçeklerinde elastik olarak davranan üst mantonun en üst bölümünden oluşur. Gezegenimizin kaya kısmını oluşturan ve en dış katmanı olan kabuğu tanımlamada kimyasal ve mineraloji yapısı kullanılır. Litosferin altındaki katman, astenosfer olarak bilinir.

Dünya'nın iç yapısı küresel katmanlardan: bir dış (silikat) katı kabuk, son derece viskoz astenosfer ve üst manto, alt manto ve daha az viskoziteye sahip bir sıvı dış çekirdek ve katı bir iç çekirdekten oluşmaktadır. Dünya'nın iç yapısının bilimsel anlayışı topografya ve kaya gözlemleri, volkanlar veya volkanik aktivite tarafından daha büyük derinliklerden yüzeye getirilen örnekler, Dünya'nın içinden geçen sismik dalgaların analizi, Dünya'nın yerçekimi ve manyetik alanlarının ölçümleri ve basınç ve sıcaklıklarda değişiklik gibi deneyler Dünya'nın derin iç karakteristik özelliklerini oluşturmaktadır.

<span class="mw-page-title-main">P dalgası</span>

AP dalgası, sismolojide sismik dalgalar olarak adlandırılan iki ana elastik cisim dalgasından biridir. P dalgaları diğer sismik dalgalardan daha hızlı hareket eder ve bu nedenle bir depremden etkilenen herhangi bir yere veya bir sismografa ulaşan ilk sinyaldir. P dalgaları gazlar, sıvılar veya katılar yoluyla iletilebilir.