İçeriğe atla

Miyogenez

Miyogenez, özellikle embriyonik gelişim sırasında iskelet kas dokusunun oluşumudur.

Miyojenez sırasında miyositleri (çok çekirdekli kas hücreleri) oluşturmak için bir araya gelen normal miyoblastı (tek çekirdekli erken kas hücreleri).

Kas lifleri genellikle öncü miyoblastların miyotüp adı verilen çok çekirdekli liflere füzyonu yoluyla oluşur. Bir embriyonun erken gelişiminde, miyoblastlar çoğalabilir veya bir miyotüpte farklılaşabilir. Bu seçimi in vivo olarak neyin kontrol ettiği genellikle belirsizdir. Hücre kültürüne yerleştirilirse, hücreleri çevreleyen ortamda yeterli fibroblast büyüme faktörü (FGF) veya başka bir büyüme faktörü varsa, miyoblast çoğalır. Büyüme faktörü tükendiğinde, miyoblastlar bölünmeyi durdurur ve miyotüplere terminal farklılaşmaya uğrar. Myoblast farklılaşması aşamalar halinde ilerler.

Farklılaşmanın Aşamaları

İlk aşama, hücre döngüsü çıkışını ve belirli genlerin ekspresyonunun başlamasını içerir.

Farklılaşmanın ikinci aşaması, miyoblastların birbirleriyle hizalanmasını içerir. Çalışmalar, sıçan ve civciv miyoblastlarının bile birbirlerini tanıyıp birbirleriyle hizalandığını göstermiştir, bu da ilgili mekanizmaların evrimsel olarak korunmasını önermektedir.

Üçüncü aşama, gerçek hücre füzyonunun kendisidir. Bu aşamada kalsiyum iyonlarının varlığı kritiktir. Farelerde, füzyona, meltrinler adı verilen bir dizi metaloproteinaz ve halen araştırılmakta olan çeşitli diğer proteinler yardımcı olur. Füzyon, aktinin plazma membranına alınmasını, ardından yakın yerleştirmeyi ve daha sonra hızla genişleyen bir gözenek oluşturmayı içerir.

Miyogenezi Destekleyen Miyosit Arttırıcı Faktörler (MEF)

Mef2

Moleküler biyoloji alanında, miyosit arttırıcı faktör-2 (Mef2 ) proteinleri, gen ekspresyonunun kontrolü yoluyla hücresel farklılaşmanın önemli düzenleyicileri olan ve dolayısıyla embriyonik gelişimde kritik bir rol oynayan bir transkripsiyon faktörleri ailesidir. Yetişkin organizmalarda, Mef2 proteinleri bazı dokularda stres tepkisine aracılık eder. Mef2 proteinleri hem MADS kutusu hem de Mef2 DNA bağlama alanları içerir .

Keşif

Mef2 başlangıçta kas farklılaşması sırasında mck güçlendirici bölge ile etkileşime giren nükleer faktörleri tanımlamak için kas kreatin kinaz (mck) geninin promoter analizi yoluyla bir transkripsiyon faktör kompleksi olarak tanımlandı.[1] RSRF (Serum Yanıt Faktörü ile İlgili) olarak adlandırılan üç insan mRNA kodlama dizisi klonlandı ve dimerize olduğu, MCK güçlendirici bölgesinde mevcut olana benzer bir konsensüs dizisini bağladığı ve transkripsiyonu tahrik ettiği gösterildi.[2] RSRF'lerin daha sonra artık Mef2A, Mef2B ve Mef2D olarak adlandırılan insan genlerini kodladığı gösterildi.

Tür dağılımı

Mef2 geni, mayadan insanlara kadar tüm ökaryot dallarında geniş çapta ifade edilir . Drosophila'nın tek bir Mef2 genine sahip olmasına rağmen, omurgalılar Mef2 geninin en az dört versiyonuna sahiptir (insan versiyonları MEF2A, MEF2B, MEF2C ve MEF2D olarak adlandırılır ), hepsi yetişkinlik boyunca embriyojenez sırasında farklı ancak örtüşen modellerde ifade edilir.[3]

Sıra ve yapı

Memeli Mef2 genlerinin tümü, yüksek oranda korunmuş N-terminal MADS-kutusu ve Mef2 alanları boyunca yaklaşık% 50 genel amino asit özdeşliği ve yaklaşık% 95 benzerlik paylaşır, ancak dizileri C-terminal transaktivasyon alanında farklılaşır (bkz. Sağdaki şekil ).[4]

MADS kutusu, minimum DNA bağlama alanı görevi görür, ancak yüksek afiniteli DNA bağlama ve dimerizasyon için Mef2 alanı adı verilen bitişik bir 29 amino asit uzantısı gereklidir. MADS kutusu ile etkileşim yoluyla, Mef2 transkripsiyon faktörleri homo- ve heterodimerize etme yeteneğine sahiptir[5] ve Mef2A, -C ve - D'nin C terminalindeki klasik bir nükleer lokalizasyon sekansı (NLS ) nükleer lokalizasyonu sağlar proteinin.[6] D-Mef2 ve insan MEF2B, bu korunmuş NLS'den yoksundur ancak yine de çekirdekte bulunur.[7]

Fonksiyon

Geliştirme

In Drosophila, MEF2 kas gelişimini düzenler.[8] Memeli Mef2, kültürdeki kas dışı hücreleri kasa dönüştürmek için bHLH transkripsiyon faktörleriyle işbirliği yapabilir.[9] bHLH faktörleri Mef2c ekspresyonunu etkinleştirebilir, bu da daha sonra kendi ifadesini sürdürme görevi görür.[10]

Nöral krest hücrelerinde Mef2c kaybı, gelişmekte olan embriyoda kraniyofasiyal kusurlara ve üst hava yolu pasajlarının bloke edilmesinden kaynaklanan neonatal ölüme neden olur.[11][12] Mef2c, kraniyofasiyal gelişim için gerekli olan iki transkripsiyon faktörü olan homeodomain transkripsiyon faktörleri DLX5 ve DLX6'nın ekspresyonunu yukarı düzenler.[11][12]

Stres tepkisi

Yetişkin dokularda, Mef2 proteinleri kardiyak hipertrofi[13] sırasındaki stres yanıtı ve kalp ve iskelet kasında doku yeniden şekillenmesini düzenler.[14]

Kardiyovasküler sistem

Mef2, kalp gelişimi ve kardiyak gen ekspresyonunda kritik bir düzenleyicidir.[15] Omurgalılarda, Mef2 transkripsiyon faktör ailesinde dört gen vardır: Mef2a, Mef2b, Mef2c ve Mef2d. Her biri geliştirme sırasında belirli zamanlarda ifade edilir. Kalpte ifade edilecek ilk gen olan Mef2c, kalp çıkış yolunun ve sağ ventrikülün çoğunun bileşenlerinin oluşturulmasına yardımcı olan ön (ikincil) kalp alanının (AHF) gelişimi için gereklidir.[16][17] Ek olarak, Mef2 genleri, mevcut damarlardan yeni kan damarlarının oluşumu olan anjiyogenezin filizlenmesine yardımcı olmak için gen ekspresyonunu etkinleştirmede endikedir.[18]

Nakavt çalışmaları

Farelerde, Mef2c'nin nakavt çalışmaları, kalp gelişiminde oynadığı çok önemli rolü göstermiştir. Mef2c'siz fareler, uygun olmayan döngü, çıkış yolu anormallikleri ve sağ ventrikülün tamamen yokluğu dahil olmak üzere önemli kalp kusurları ile embriyonik gün 9.5-10.[15] Bu, ön kalp alanının uygunsuz farklılaşmasını gösterir. Mef2c özellikle AHF'de devre dışı bırakıldığında, fareler doğumda bir dizi çıkış yolu kusuru ve şiddetli siyanoz ile ölür. Bu nedenle, özellikle ön kalp alanını düzenleyerek, kalp gelişiminin birçok yönü için Mef2 gereklidir.[16]

Ek Bilgiler

MEF2, Myocyte Enhancer Factor 2, MEF2A, B, C ve D gibi dört spesifik sayıya sahip bir transkripsiyon faktörüdür. Her MEF2 geni belirli bir kromozom üzerinde bulunur. MEF2'nin kalbin (Chen) gelişimi ve döngüsüne dahil olduğu bilinmektedir. MEF2 miyosit farklılaşması ve gen aktivasyonu için gereklidir (Siyah). Her iki rol de kalp yapısına katkıda bulunur ve embriyonik gelişimde MEF2 ile bir bozulma varsa, iki fenotipik soruna (Karamboulas) yol açabilir. Tip-I fenotip, kalpte ciddi malformasyonlara neden olabilir ve tip-II fenotipi normal görünmesine rağmen, kalp yetmezliğine neden olabilen ince duvarlı bir miyokardiyuma sahiptir. Ortaya çıkabilecek diğer bir sorun, nakavt gen MEF2C'den kaynaklanmaktadır. MEF2C'nin, Tdgf1 (teratokarsinomdan türetilmiş büyüme faktörü 1) ile ilişkili olduğunda doğuştan kalp hastalığı ile doğrudan ilişkili olduğu bilinmektedir. MEF2C, Tdgf1'i uygunsuz bir şekilde düzenlerse, özellikle kalbin embriyonik gelişiminde gelişimsel kusurlar ortaya çıkar. (Chen). MEF2C'nin Tdgf1 proteini ile etkileşim yolu, farklı mekanizmaları düzenlemek için gerekli olan 〖Ca〗 ^ (2+) sinyal yoludur. Küçük olmayan kodlayıcı RNA'lar olan MicroRNA'lar da MEF2C'nin düzenlenmesinde özel bir rol oynar. Doğuştan kalp hastalığının ifadesi, mikroRNA miR-29C'nin (Chen) aşağı regülasyonu nedeniyle yukarı regüle edilir. MEF2 ailesiyle ilişkili diğer birkaç bilinen hastalık, karaciğer fibrozu, kanserler ve nörodejeneratif hastalıklardır (Chen).

Kaynakça

  1. ^ Gossett, L A; Kelvin, D J; Sternberg, E A; Olson, E N (Kasım 1989). "A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes". Molecular and Cellular Biology. 9 (11): 5022-5033. doi:10.1128/mcb.9.11.5022. ISSN 0270-7306. 
  2. ^ Pollock, R; Treisman, R (1 Aralık 1991). "Human SRF-related proteins: DNA-binding properties and potential regulatory targets". Genes & Development. 5 (12a): 2327-2341. doi:10.1101/gad.5.12a.2327. ISSN 0890-9369. 
  3. ^ McKinsey, Timothy A; Zhang, Chun Li; Olson, Eric N (Ocak 2002). "MEF2: a calcium-dependent regulator of cell division, differentiation and death". Trends in Biochemical Sciences. 27 (1): 40-47. doi:10.1016/s0968-0004(01)02031-x. ISSN 0968-0004. 
  4. ^ Black, Brian L.; Olson, Eric N. (Kasım 1998). "TRANSCRIPTIONAL CONTROL OF MUSCLE DEVELOPMENT BY MYOCYTE ENHANCER FACTOR-2 (MEF2) PROTEINS". Annual Review of Cell and Developmental Biology. 14 (1): 167-196. doi:10.1146/annurev.cellbio.14.1.167. ISSN 1081-0706. 
  5. ^ Molkentin, J. D.; Olson, E. N. (3 Eylül 1996). "Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors". Proceedings of the National Academy of Sciences. 93 (18): 9366-9373. doi:10.1073/pnas.93.18.9366. ISSN 0027-8424. 
  6. ^ Borghi, Serena; Molinari, Susanna; Razzini, Giorgia; Parise, Flavia; Battini, Renata; Ferrari, Stefano (15 Aralık 2001). "The nuclear localization domain of the MEF2 family of transcription factors shows member-specific features and mediates the nuclear import of histone deacetylase 4". Journal of Cell Science. 114 (24): 4477-4483. doi:10.1242/jcs.114.24.4477. ISSN 1477-9137. 
  7. ^ Chavdarov, Anatoliy V (28 Haziran 2020). "DEVELOPING TECHNOLOGY OF CREATING WEAR-RESISTANT CERAMIC COATING FOR ICE CYLINDER". JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES. spl10 (1). doi:10.26782/jmcms.spl.10/2020.06.00048. ISSN 0973-8975. 9 Haziran 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Mart 2022. 
  8. ^ Lilly, B.; Galewsky, S.; Firulli, A. B.; Schulz, R. A.; Olson, E. N. (7 Haziran 1994). "D-MEF2: a MADS box transcription factor expressed in differentiating mesoderm and muscle cell lineages during Drosophila embryogenesis". Proceedings of the National Academy of Sciences. 91 (12): 5662-5666. doi:10.1073/pnas.91.12.5662. ISSN 0027-8424. 
  9. ^ Molkentin, Jeffery D.; Black, Brian L.; Martin, James F.; Olson, Eric N. (Aralık 1995). "Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins". Cell. 83 (7): 1125-1136. doi:10.1016/0092-8674(95)90139-6. ISSN 0092-8674. 
  10. ^ Wang, Da-Zhi; Valdez, M. Renee; McAnally, John; Richardson, James; Olson, Eric N. (15 Kasım 2001). "The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development". Development. 128 (22): 4623-4633. doi:10.1242/dev.128.22.4623. ISSN 1477-9129. 
  11. ^ a b Verzi, Michael P.; Agarwal, Pooja; Brown, Courtney; McCulley, David J.; Schwarz, John J.; Black, Brian L. (Nisan 2007). "The Transcription Factor MEF2C Is Required for Craniofacial Development". Developmental Cell. 12 (4): 645-652. doi:10.1016/j.devcel.2007.03.007. ISSN 1534-5807. 
  12. ^ a b Miller, Craig T.; Swartz, Mary E.; Khuu, Patricia A.; Walker, Macie B.; Eberhart, Johann K.; Kimmel, Charles B. (Ağustos 2007). "mef2ca is required in cranial neural crest to effect Endothelin1 signaling in zebrafish". Developmental Biology. 308 (1): 144-157. doi:10.1016/j.ydbio.2007.05.018. ISSN 0012-1606. 
  13. ^ Zhang, Chun Li; McKinsey, Timothy A.; Chang, Shurong; Antos, Christopher L.; Hill, Joseph A.; Olson, Eric N. (Ağustos 2002). "Class II Histone Deacetylases Act as Signal-Responsive Repressors of Cardiac Hypertrophy". Cell. 110 (4): 479-488. doi:10.1016/s0092-8674(02)00861-9. ISSN 0092-8674. 26 Temmuz 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Mart 2022. 
  14. ^ Potthoff, Matthew J.; Wu, Hai; Arnold, Michael A.; Shelton, John M.; Backs, Johannes; McAnally, John; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N. (4 Eylül 2007). "Histone deacetylase degradation andMEF2 activation promote the formation of slow-twitch myofibers". Journal of Clinical Investigation. 117 (9): 2459-2467. doi:10.1172/jci31960. ISSN 0021-9738. 
  15. ^ a b Anderson, Courtney M.; Hu, Jianxin; Thomas, Reuben; Gainous, T. Blair; Celona, Barbara; Sinha, Tanvi; Dickel, Diane E.; Heidt, Analeah B.; Xu, Shan-Mei; Bruneau, Benoit G.; Pollard, Katherine S. (1 Nisan 2017). "Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites". Development. 144 (7): 1235-1241. doi:10.1242/dev.138487. ISSN 1477-9129. 
  16. ^ a b Barnes, Ralston M.; Harris, Ian S.; Jaehnig, Eric J.; Sauls, Kimberly; Sinha, Tanvi; Rojas, Anabel; Schachterle, William; McCulley, David J.; Norris, Russell A.; Black, Brian L. (1 Ocak 2016). "MEF2C regulates outflow tract alignment and transcriptional control of Tdgf1". Development. doi:10.1242/dev.126383. ISSN 1477-9129. 
  17. ^ Verzi, Michael P.; McCulley, David J.; De Val, Sarah; Dodou, Evdokia; Black, Brian L. (Kasım 2005). "The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field". Developmental Biology. 287 (1): 134-145. doi:10.1016/j.ydbio.2005.08.041. ISSN 0012-1606. 
  18. ^ Sacilotto, Natalia; Chouliaras, Kira M.; Nikitenko, Leonid L.; Lu, Yao Wei; Fritzsche, Martin; Wallace, Marsha D.; Nornes, Svanhild; García-Moreno, Fernando; Payne, Sophie; Bridges, Esther; Liu, Ke (15 Ekim 2016). "MEF2 transcription factors are key regulators of sprouting angiogenesis". Genes & Development. 30 (20): 2297-2309. doi:10.1101/gad.290619.116. ISSN 0890-9369. 

Dış bağlantılar

  • Tüm Ökaryotlarda OrthoDB Ortoloji
  • MEF2 + protein, + C + elegans ABD Ulusal Tıp Kütüphanesi Tıbbi Konu Başlıkları'nda (MeSH)
  • Mef2 + protein, + Drosophila, ABD Ulusal Tıp Kütüphanesi Tıbbi Konu Başlıkları'nda (MeSH)
  • Mef2 + protein, + ABD Ulusal Tıp Kütüphanesi Tıbbi Konu Başlıkları'nda (MeSH) zebra balığı
  • SMP1 + protein, + Arabidopsis ABD Ulusal Tıp Kütüphanesi Tıbbi Konu Başlıkları'nda (MeSH)
  • ABD Ulusal Tıp Kütüphanesi Tıbbi Konu Başlıkları'nda (MeSH) SMP1 + protein, + S + cerevisiae

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Mesajcı RNA</span> Bir protein üretmek için ribozom tarafından okunan RNA

Mesajcı RNA (mRNA), sentezlenecek bir proteinin amino asit dizisine karşılık gelen kimyasal şifreyi taşıyan bir moleküldür. mRNA, bir DNA kalıptan transkripsiyon yoluyla sentezlenir ve protein sentez yeri olan ribozomlara, protein kodlayıcı bilgiyi taşır. Burada, çevirim (translasyon) süreci sonucu, RNA polimerindeki bilgi ile bir amino asit polimeri üretilir. Nükleik asitlerin amino asit dizilerine karşılık gelen bölgelerindeki her üç baz, proteindeki bir amino asite karşılık gelir. Bu üçlülere kodon denir, her biri bir amino asit kodlar, bitiş kodonu ise protein sentezini durdurur. Bu işlem iki diğer RNA türünü daha gerektirir: taşıyıcı RNA (tRNA) kodonun tanınmasına aracılık eder ve ona karşılık gelen amino asiti getirir; ribozomal RNA (rRNA) ise ribozomdaki protein imalat mekanizmasının kataliz merkezidir.

<span class="mw-page-title-main">Kök hücre</span> İnsan vücudunu oluşturan, sınırsız bölünme, her türlü vücut hücresine dönüşme ve yeni görevler üstlenme imkânına sahip ana hücre

Kök hücre, mitoz bölünmeyle özelleşmiş hücre tiplerine farklılaşabilen ve daha fazla kök hücre üretmek için kendini yenileme yeteneğine sahip olan, bütün çok hücreli canlıların doku ve organlarını oluşturan ana hücre türleridir.

Biyolojide sinyal transdüksiyonu bir hücrenin bir cins sinyal veya uyarıyı başka birine dönüştürme sürecidir. Çoğu zaman bu, hücre içinde enzimlerin yürüttüğü biyokimyasal reaksiyonlarla gerçekleşir, bunlar birbirine ikincil habercilerle bağlanıp bir "ikincil haberci yolu" oluştururlar. Bu süreçler genelde hızlı olur, iyon akıları durumunda milisaniyeler mertebesinde, protein ve lipit aracılıklı kinaz çağlayanı (cascade) durumunda dakikalar mertebesinde sürer. Çoğu sinyal transdüksiyonu işleminde sinyal ilk uyarandan ileri doğru yayıldıkça bu olaylara katılan protein ve diğer moleküllerin sayısı da artar ve böylece küçük bir sinyal büyük bir tepki doğurabilir; buna "sinyal kaskadı" denir. Bakteri ve diğer tek hücreli organizmalarda, hücrenin sahip olduğu sinyal trasndüksiyon süreçleri onun çevresine nasıl tepki vereceğini belirler. Çok hücreli organizmalarda organizmanın bir bütün olarak çalışmasını sağlamak için bireysel hücrelerin davranışlarını koordine eden pek çok sinyal transdüksiyon süreci gerekmektedir. Tahmin edileceği üzere, bir organizma ne kadar karmaşıksa organizmanın sahip olduğu sinyal transdüksiyon süreçlerinin repertuvarı da o derece karmaşık olmak durumundadır. Dolasıyla hücresel seviyede hem iç hem de dış çevrenin duyumu sinyal transdüksiyonuna dayalıdır. Çoğu hastalık, örneğin diyabet, ateroskleroz, özbağışıklık (otoimmünite), kanser, sinyal transdüksiyon yollarındaki bozukluklardan kaynaklanır. Bu durum, sinyal transdüksiyonunun biyoloji kadar tıpta da olan önemini ortaya koyar.

<span class="mw-page-title-main">Transkripsiyon (genetik)</span> bir DNA parçasının RNAya kopyalanması süreci

Transkripsiyon, yazılma veya yazılım, DNA'yı oluşturan nükleotit dizisinin RNA polimeraz enzimi tarafından bir RNA dizisi olarak kopyalanması sürecidir. Başka bir deyişle, DNA'dan RNA'ya genetik bilginin aktarımıdır. Protein kodlayan DNA durumunda, transkripsiyon, DNA'da bulunan genetik bilginin bir protein veya peptit dizisine çevirisinin ilk aşamasıdır. RNA'ya yazılan bir DNA parçasına "transkripsiyon birimi" denir. Transkripsiyonda hata kontrol mekanizmaları vardır, ama bunlar DNA çoğalmasındakinden daha az sayıda ve etkindirler; dolayısıyla transkripsiyon DNA çoğalması kadar aslına sadık değildir.

Moleküler biyolojide bir transkripsiyon faktörü genlerin transkripsiyonunu düzenlemek için DNA üzerinde belli bir diziye bağlanabilen bir proteindir. Bunlar diziye-özgün DNA bağlanma proteini olarak da adlandırılır. Transkripsiyon faktörleri tek başına veya bir komplekste yer alan başka proteinlerle beraber, RNA polimeraz tarafından bir genin transkripsiyonunu ya kolaylaştırırlar veya engeller.

<span class="mw-page-title-main">Transkripsiyon faktör sınıfları listesi</span> Vikimedya liste maddesi

Transkripsiyon faktörleri çoğu zaman DNA bağlanma bölgelerindeki benzerliğe göre sınıflandırılırlar:

Epigenetik, biyolojide, DNA dizisindeki değişikliklerden kaynaklanmayan ama aynı zamanda ırsi olan gen ifadesi değişikliklerini inceleyen bilim dalıdır. Diğer bir deyişle, ırsi (kalıtımsal) olup genetik olmayan fenotipik varyasyonları incelemektedir. Bu değişiklikler hücreyi ya da organizmayı doğrudan etkilemektedir ancak, DNA dizisinde hiçbir değişiklik gerçekleşmemektedir.

<span class="mw-page-title-main">MikroRNA</span> yaklaşık 21-23 nükleotit uzunluğunda tek iplikli RNA molekülü türü

Genetikte, mikroRNA (miRNA) yaklaşık 21-23 nükleotit uzunluğunda tek iplikli RNA molekülü türüdür, gen ifadesinin düzenlenmesinde rol oynar. miRNA'lar kodlamayan RNA'lardandır, yani DNA'dan transkripsiyonu yapılan ama proteine çevirisi yapılmayan genler tarafından kodlanırlar. Pri-miRNA olarak adlandırılan primer transkriptler işlenerek, önce pre-miRNA adlı kısa sap-ilmik yapılarına, sonra da fonksiyonel miRNA'ya dönüşürler. Olgun miRNA moleküller bir veya daha çok mesajcı RNA (mRNA) ile kısmî tamamlayıcıdır ve başlıca işlevleri gen ifadesini aşağı ayarlamaktır. 1993'te Lee ve çalışma arkadaşları tarafından Victor Ambros laboratuvarında keşfedilmişlerdir, ancak mikroRNA terimi ilk 2001'de kullanıma girimiştir.

<span class="mw-page-title-main">SREBP</span>

Sterol düzenleyici eleman bağlayıcı proteinler, "sterol düzenleme elemanı" adlı DNA dizisine bağlanan transkripsiyon faktörleridir. SREBP'ler transkripsiyon faktörlerinin bazik-sarmal-ilmik-sarmal lösin fermuar sınıfına aittirler. İnaktifken çekirdek ve endoplazmik retikulum zarlarına bağlı olurlar. Düşük seviyede sterol bulunduran hücrelerde SREBP'ler kesilir ve suda çözünür bir N-ucu bölge, çekirdeğe taşınır. Bu etkinleşmiş SREBP'ler sonra spesifik sterol düzenleyici eleman DNA dizilerine bağlanarak, sterol sentezinde yer alan enzimlerin sentezini yukarı ayarlarlar. Sterollar ise SREBP'lerin kesilmesini inhibe ettiği için geri beslemeli bir döngü ile sterol sentezi yavaşlar ve sonunda durur.

<span class="mw-page-title-main">Hızlandırıcı</span>

Hızlandırıcı, genetikte, bir gen kümesindeki genlerin transkripsiyon hızının artmasını sağlayan, transkripsiyon faktörlerinin bağlandığı kısa bir DNA bölgesidir. Bir hızlandırıcının üzerine etki ettiği genlere özellikle yakın olması, hatta aynı kromozom üzerinde dahi olması gerekmez. Ökaryotik hücrelerde DNA'nın içinde bulunduğu kromatin kompleksi süpersarımlı bir haldedir ve bunun sonucu olarak yapısında burkulmalar vardır; öyle bir şekilde katlanmıştır ki, aralarındaki nükleotit sayısı bakımından uzak olan promotör ve onların hızlandırıcıları, geometrik anlamda birbirlerine yakın olabilirler. Bu sayede hızlandırıcı, genel transkripsiyon faktörleri ve RNA polimeraz II ile etkileşime girebilir. Bazı hızlandırıcıların kontrol ettikleri genin promotöründen birkaç yüz-bin baz çifti uzakta olduğu bulunmuştur. Hızlandırıcılar doğrudan promotöre bağlanmazlar, aktivatör proteinler tarafından bağlanırlar. Aktivatör proteinler, aracı kompleksi ile ile etkileşir, bu da polimeraz II ve genel transkripsiyon faktörlerini seferber edip transkripsiyonun başlamasını sağlar.

Gen ürünü bir genin ifadesi sonucu elde edilen biyokimyasal maddedir. Elde edilen gen ürünü miktarı zaman zaman ilgili genin niteliğini anlamak için de kullanılmaktadır. Aşırı miktardaki gen ürünü kansere yol açan onkogen etkinliği gibi hastalık yapıcı alellerle ilişkilendirilmektedir.

Piwi etkileşimli RNA (piRNA), hayvan hücrelerinde eksprese edilen küçük kodlamayan RNA moleküllerinin en büyük sınıfıdır. piRNA, piwi proteinleri ile etkileşerek RNA-protein komplekleri oluştururlar. Bu kompleksler, germ çizgi hücrelerinde, özellikle de spermatogenezdeki retrotranspozonların ve diğer genetik elementlerin epigenetik ve transkripsiyon sonrası gen sessizleştirilmesiyle bağlantılıdır. microRNA'lardan büyüklük, dizi koruma eksikliği ve artan karmaşık yapı bakımından farklıdırlar. piRNA'ların nasıl üretildiği belirsizliğini korumaktadır, ancak biyogenez yolağı miRNA ve siRNA'dan farklıdır. rasiRNA'lar piRNA'ların alt türleridir.

Moleküler biyolojide 7SK, metazoan'da bol bulunan küçük bir nükleer RNA`dır. Pozitif transkripsiyon uzatma faktörünün P-TEFb kontrol transkripsiyonunu düzenlemede önemli bir rol oynar. 7SK kompleksinin stabilitesi ve fonksiyonunu düzenleyen diğer proteinler küçük bir nükleer ribonükleoprotein kompleksinde (snRNP) bulunur.

<span class="mw-page-title-main">Jeffrey C. Hall</span> Amerikalı genetikçi, kronobiyolojist ve bilim insanı

Jeffrey C. Hall tam adı ile Jeffrey Connor Hall, Amerikalı genetikçi, kronobiyolojist ve bilim insanı.

Ökaryotik transkripsiyon, ökaryotik hücrelerin DNA'da depolanan genetik bilgiyi RNA replika birimlerine kopyalamak için kullandıkları ayrıntılı bir işlemdir. Gen transkripsiyonu hem ökaryotik hem de prokaryotik hücrelerde görülür. Tüm farklı RNA tiplerinin transkripsiyonunu başlatan prokaryotik RNA polimerazının aksine, ökaryotlardaki RNA polimerazlar, her biri farklı bir gen tipini kodlayan üç varyasyona sahiptir. Bir ökaryotik hücre, transkripsiyon ve translasyon işlemlerini ayıran bir çekirdeğe sahiptir. Ökaryotik transkripsiyon, DNA'nın nükleozomlara ve daha yüksek dereceli kromatin yapılarına paketlendiği çekirdeğin içinde meydana gelir. Ökaryotik genomun karmaşık oluşu, kompleks ve çok çeşitli bir gen anlatım kontrol mekanizmasının varlığını gerektirir.

Operon, genetikte tek bir promotörün kontrolü altında bir gen kümesi içeren DNA'nın işlevsel bir birimidir. Genler birlikte bir mRNA ipliğine yazılır ve daha sonra ya sitoplazmada birlikte translasyona uğrar veya ayrı ayrı translasyona uğrayan monosistronik mRNA'ları oluşturmak için her biri tek bir gen ürününü kodlayan birkaç mRNA ipliği gibi uçbirleştirmeye tabi tutulur. Bunun sonucu, operonda bulunan genler ya birlikte ifade edilirler ya da hiç ifade edilmezler. Bir operonu tanımlamak için birkaç genin birlikte transkripsiyonunu gerekir.

<span class="mw-page-title-main">Tümör nekroz faktörü alfa</span>

Tümör nekroz faktörü ; sistemik inflamasyonda yer alan bir hücre sinyal proteinidir (sitokindir) ve akut faz reaksiyonunu oluşturan sitokinlerden biridir. CD4+ lenfositler, NK hücreleri, nötrofiller, mast hücreleri, eozinofiller ve nöronlar gibi diğer birçok hücre tipi tarafından üretilebilmesine karşın, esas olarak aktif makrofajlarca üretilir. TNF, homolog bir TNF alanına sahip çeşitli transmembran proteinlerden oluşan TNF süper ailesinin bir üyesidir.

Transkripsiyon sonlandırma faktörü 2 bir protein, insanlarda TTF2 geni tarafından kodlanan bir proteindir.

Transkripsiyon faktörü SOX18 SOX18 geni tarafından kodlanan bir proteindir.

Bir sigma faktörü, bakterilerde transkripsiyonun başlatılması için gerekli olan bir proteindir. RNA polimerazın (RNAP) gen promotörlerine spesifik bağlanmasını sağlayan bir bakteriyel transkripsiyon başlatma faktörüdür. Archaeal transkripsiyon faktörü B ve ökaryotik faktör TFIIB ile homologdur. Belirli bir genin transkripsiyonunu başlatmak için kullanılan spesifik sigma faktörü, gene ve o genin transkripsiyonunu başlatmak için gereken çevresel sinyallere bağlı olarak değişecektir. RNA polimeraz tarafından promotörlerin seçimi, onunla ilişkili sigma faktörüne bağlıdır. Ayrıca bitki kloroplastlarında bakteri benzeri plastid kodlu polimerazın (PEP) bir parçası olarak bulunurlar.