İçeriğe atla

Mikro elektro-mekanik sistemler

Mikroelektro-mekanik sistemler (MEMS) günümüzde var olan mekanik ve elektrik sistemlerin entegre ve minyatürize versiyonları olup mikron boyutlarında olan bu sistemleri nanoelektromekanik sistemler (NEMS) vasıtası ile nanoteknoloji uygulamaları için de kullanmak da mümkündür.[1] MEMS kavramı ilk olarak 1987 yılında bir mikrodinamik çalıştayı esnasında telaffuz edilmiştir. Fakat MEMS kavramının ortaya çıkması esas olarak entegre devre çalışmalarında yaşanan gelişmeler ışığında olmuştur. Bu gelişmeler içinde kalıba alma, kaplama teknolojileri, ıslak oyma metotları, kuru oyma metotlarında yaşanan gelişmeler mikro aygıt yapımını mümkün kılmıştır. Küçük aygıtların yapılması konusunda ortaya çıkan ilk fikir ünlü fizikçi Richard Feynman tarafından 1959 yılında yapılan "There's plenty of room at the bottom" isimli konuşmada ortaya atılmıştır. Mikro-elektromekanik sistemlerin boyutları 1 ile 100 mikrometre arasında değişim gösterir. Bu küçük boyutlarda standard fizik kuralları genellikle geçersizdir. MEMS yapılarında yüzey alanının hacime oranı oldukça yüksektir bu sebep ile yüzey etkileri (elektrostatik kuvvetler,ıslatma) hacim etkilerine (eylemsizlik,termal kütle) baskın gelir. Mikro elektro-mekanik sistem yapıları üç bölümden oluşur. Bu bölümler mekanik bölüm, mekanik bölümü çalıştıran tahrik bölümü ve mekanik hareketin davranışını inceleyen algılama bölümü olarak özetlenebilir. MEMS tahrik mekanizmaları verilen tahrik tipine göre farklılık gösterir. MEMS yapıları termal, elektrostatik, manyetik, pnömatik ve optik olarak tahrik edilebilir. Algılama işlemi ise genellikle optik ve elektronik sinyaller vasıtası ile yapılır. MEMS, Makina-Malzeme-Elektronik başta olmak üzere, temelde tüm mühendislik dalları ve temel bilimlerle birlikte pek çok dalı kapsayan çalışmaların yapıldığı disiplinlerarası bir kavramdır.

Minimizasyon kavramı

MEMS aygıt tasarımı entegre devre üretiminde gerçekleşen yenilikler ışığında ortaya çıkmıştır. Entegre devre üretiminde ortaya çıkan gereksinimlerden doğan aygıtları küçültme fikri sayesinde küçük aygıt tasarımlarına olanak veren üretim metotları geliştirilmiş ve ilk olarak entegre devre endüstrisinde kullanılmıştır. Entegre devrelerde önemli bir yer teşkil eden transistorün küçültülmesi günümüz modern işlemcilerinin peformansına önemli bir katkı sağlamıştır. Günümüzde 45 nanometre boyutunda transistorler hemen hemen bütün işlemcilerde kullanılmaktadır. Entegre devrelerin geneli silikon materyalinden üretilir. Silikon mekanik ve elektronik özellikleri itibarı ile entegre devre yapımına en uygun malzeme olarak göze çarpmaktadır. Entegre devre üretim tekniklerinin büyük bir kısmı silikona yönelik tasarlandığı için silikon MEMS yapıları için de vazgeçilmez bir materyaldir. Silikon materyali ve entegre devre üretim metotları kullanılarak pek çok MEMS yapısı üretilebilir. Silikon işlenebilirliği sayesinde aygıt boyutlarının daha küçük değerlere indirilmesinde de önemli bir rol oynamıştır. Aygıtları küçültmek ise aygıt performansını arttırmış, birim aygıt fiyatını düşürmüş ve güç tüketiminin azalmasına neden olmuştur. Aygıt boyutları küçültülürken pek çok yeni üretim metodu da geliştirilmiştir (Molekül Demeti ile Kaplama,Metal Organik Kimyasal Buharlaştırma Metodu). Bu gelişmeler neticesinde ise mikron boyutlarında fonksiyonel mekanik aygıtlar yapılması ve bu aygıtların elektronik olarak kontrol edilmesi mümkün hale gelmiştir.[2]

Temel üretim teknikleri

Kaplama (Deposition)

MEMS teknolojisinde yer alan ilk üretim aşaması ince film kaplamasıdır. Bu filmlerin ince tabakalar halinde oluşturulması için kullanılan standard metotlar Kimyasal Buhar ile Kaplama (CVD), Fiziksel Buhar ile Kaplama (PVD) olarak sınıflandırılabilir. Bu metotların tercihi elde edilecek aygıtın yapısı, kullanılacak malzeme ve diğer aşamalarda kullanılacak metotlar ile doğrudan ilişkilidir. Fiziksel buhar ile kaplama metotları : Isı ile Buharlaştırma, Saçınım ile kaplama, Elektron demeti ile kaplama, Kathodik Ark ile kaplama, Lazer ile kaplama, Molekül Demeti ile Kaplama, Oksidasyon. Kimyasal buhar ile kaplama metotları : Düşük sıcaklıkta Kimyasal Buhar ile Kaplama, Yüksek sıcaklıkta Kimyasal Buhar ile Kaplama, Düşük basınç altında Kimyasal Buhar ile Kaplama, Plazma destekli Kimyasal Buhar ile Kaplama, Lazer destekli Kimyasal Buhar ile Kaplama, Metal organik Kimyasal Buhar ile Kaplama.

Şablon oluşturma (Lithography)

Işınım ile şablon oluşturma

Işınım ile şablon oluşturma kavramı, belli bir desenin ışığa duyarlı malzeme üzerine, ışınım ile seçilimli olarak aktarılmasını kasteder. Işığa duyarlı malzemelerin fiziksel özellikleri, ışınım etkisi altında değişir. Eğer bir ışığa duyarlı malzeme, maskeleme gibi bir yöntemle seçilimli olarak ışınıma maruz kalırsa, ışınıma maruz kalan ve kalmayan bölgeler arasındaki fiziksel özellikler farklılık gösterir. Işınıma maruz kalan bölge daha sonra uzaklaştırılabilir veya üzerine çeşitli işlemler yapılabilir.

Diğer şablon oluşturma metotları

Elektron demeti ile taranarak çok daha dar ve küçük bölgelerin şablonu oluşturulabilir. İyon demetleri ile litografi yapılması ise daha derin yapıların şablonunun tanımlanmasına olanak sağlar.[3] İyon demetlerinin taradığı alan elektron demetinden çok daha büyüktür. Yumuşak kalıplar kullanılarak yapılan şablon oluşturma metodu kolay uygulanabilirliği ve tekrarlanabilirliği açısından çok tercih edilen bir metottur. Fakat bu metot ile yapı çok kolay bozulabildiğinden uygulanırken dikkatli olunması gerekmektedir. X-ray ile şablon oluşturma metodu küçük ölçekli yapıların şablonları için kullanılan metotlardan birisidir. Bu metodun kullanımı optik metotların dalga boyu limitini aşması ile popülerliğini yitirmiştir.[4] Tarama sondası litografisi yakın zaman içinde MEMS alanında pek çok uygulama bulmuştur. Tek elektron ile çalışan transistorlerin şablonları bu metot ile hazırlanmıştır.[5]

Şablon uyarınca malzeme oyma metotları (Etching)

MEMS yapıların oluşumunda gerçekleşen son aşama materyale aktarılan şablon uyarınca yüzeyin şekillendirilmesidir. Bu işlemin gerçekleşebilmesi için malzemelerin bir kısmının bilinçli biçimde ortadan kaldırılması gereklidir. Malzemeleri ortadan kaldırmak için standard olarak uygulanan iki metot bulunmaktadır. Bu metotlardan ilki şablonu çıkarılmış yapıda bulunan şablon dışı malzemenin bir sıvı içerisinde çözülerek veya kimyasal reaksiyona sokularak ortadan kaldırılmasıdır (Wet Etching). Reaktif iyonlar ile malzeme kaldırılması ise başka bir yüzey işleme metodudur. Bu metot şablon üzerinde kalan veya şablonunun dışarısında kalan bölgeleri (Bu durum şablonu oluşturan maskenin negatif veya pozitif olması ile değişim gösterir) reaktif iyonlar ile tarayarak şablon uyarınca malzemeye şekil verir. Bu metodun dezavantajı ise yüksek enerjili iyonların yüzeye zarar vermesi veya yük birikimine neden olmasıdır. Reaktif iyon metodunun gelişmiş bir versiyonu ise derin reaktif iyon metodudur. Bu metot izotropik ve anizotropik iki iyon ile malzeme kaldırma metodunun bir kombinasyonudur. Bu metot ile malzeme çok daha derin ve düzgün bir profil ile işlenebilir.[6]

Uygulamaları

Günümüzde MEMS birçok uygulama ile hayatımıza yerleşmiş durumdadır. Bu uygulamalardan bazıları aşağıda yer almaktadır.

Mürekkepli Yazıcılar

Bazı malzemelerin piezoelektrik özelliklerine dayaranak tasarlanan MEMS'ler mürekkepli yazıcıların mürekkep püskürtme işlemini kontrol etmek amacı ile kullanılmaktadır. Voltaj farkı uygulandığı zaman piezoelektrik malzemelerin boyutları değişmekte ve bu şekil değişimi ile mürekkebin akışı kontrol edilmektedir.

Hava yastıkları

Hava yastıkları arabanın yavaşlama hızına bağlı olarak çalışmaya başlarlar. Yavaşlama hızı, ivme ölçerler ile tayin edilir. Hava yastıklarında kullanılan sensörler MEMS ivme ölçerleridir. Bu MEMS ivme ölçerleri, ani hareket değişimleri sırasında kapasitansta gerçekleşen değişim ile algılarlar ve sinyal oluşturarak hava yastığının çalışmasını sağlarlar. MEMS öncesinde kullanılan, cıva anahtarı olarak bilinen sistemler kullanılan hava yastıklarının çalışması sırasında sorunlar yaşanmaktaydı. Bu sebepten dolayı günümüzde kullanılan hava yastıklarının tamamında MEMS temelli sensörler kullanılmaktadır.

Işınım ölçer (Bolometer)

Bolometreler ışınımı (elektromagnetik radrasyonu) ölçmek için kullanılan cihazlardır. Yalıtkan kaplama yapılmış bir emici bağlantı ile sabit sıcaklıklı bir ısı deposuna bağlı algılayıcılardır. Işınım ölçerlerin emdikleri radrasyon sebebi ile sıcaklıkları değişir, bu sıcaklık değişimi ile ışınımdaki değişim algılanır. Mikrobolometreler termal kameralarda kullanılmaktadır. 160x120 den 1024x768 e kadar çeşitli çözünürlükleri üretilen bolometre gridleri sıcaklık dağılımına göre grafik oluşturmada kullanılmakta.[7]

Jiroskop (Gyroscope)

Jiroskoplar açısal momentum prensiplerine bağlı olarak yön bulma için kullanılmaktadır. Geleneksel jiroskoplar yüksek sürtünmeden dolayı yüksek oranda hata vermektedir, büyük boyutları ve imalatta gerken düşük toleranslar yüzünden de maliyetleri yüksektir. Yeni geliştirilen MEMS temelli jiroskoplar ise titreşen bir objenin destek yüzeyi değiştirilirken bile aynı düzlemde kalma eğilimine dayanarak çalışmaktadır. Temeldeki fiziksel prensip farklılığından ve boyut ve üretim yöntemi farkından dolayı MEMS jiroskoplar çok daha ucuz ve yüksek hassasiyette çalışmaktadır.

Basınç ölçer

Basınç ölçerler, sıvı ve gazların basıncını ölçmek için kullanılmaktadır. Sıvının ilerlemek için uyguladığı kuvvetin alana bölümü basıncı vermektedir. Basınç ölçerler günlük birçok uygulamada basıncı ölçmek için kullanılmaktadır. Micro elektromekanik sistemlerin basınç ölçerlere adapte edilmesi, çok küçük yarı iletken çiplerden basınç ölçerler yapılmasını sağlamıştır. Küçülen boyut ve artan hassasiyet sayesinde basınç ölçerlerin kullanımı yaygınlaşmıştır.

Bio - Mikro elektromekanik sistemler (BioMems)

Bio-MEMS'ler, biyolojik maddelerin bilimsel amaçlarla analizi, ölçümü ve aktivitelerinin gözlenmesi için kullanılan mikroelektromekanik yapılardır. Micro teknolojinin en son gelişmekte olduğu alan bu alandır. Bio-MEMSin gelişmekte oluduğu alanlar, Lab-on-Chip uygulamaları, teşhis ve tedavi cihazları ve toplam analiz sistemleridir.

Limitleri

MEMS yapılarını sınırlayan en önemli faktörlerden ilki bu yapıların fiziksel davranışının newton fiziği tarafından ifade edilmesinin güç olmasıdır. Bu yapılarda meydana gelen kuantum etkilerinin de fiziksel modele dahil edilmesi ise bu yapıların fiziksel olarak modellenmesini daha da zorlaştırmaktadır. Kuantum etkilerinin bir kısmının halen ifade edilememiş olması ise bazı MEMS yapılarının fiziksel olarak modellenmesini engellemektedir. MEMS yapılarını sınırlayan bir diğer faktör ise çevre koşullarından çabuk etkilenmeleridir. Bu durumun engellenebilmesi için bu aygıtların çevreden izole edilmesi gerekmektedir. MEMS izolasyonu oldukça hassas ve fabrikasyon bilgisi gerektiren bir iştir. İzolasyon alternatifleri çok sınırlı olduğu için MEMS boyutları izolasyon opsiyonları ile sınırlandırılmıştır. MEMS yapıları ayrıca günümüzde var olan malzeme ve fabrikasyon metodu sayısı ile de sınırlandırılmıştır. MEMS yapıları farklı sistemlerden meydana gelebildiği için farklı MEMS yapılarının da içinde bulunan sistemler uyarınca farklı limitleri vardır. Optik tahrik ile çalışan veya üretilen MEMS yapılarının çoğunluğu kullanılan dalga boyu ile sınırlıdır.[8] Sıvı akışını ölçen veya kullanan MEMS yapıları ise akışkanlar mekaniği içinde geçerli olan türbülanslı akışın kanalın boyutunun küçülmesi ile doğru orantılı olarak küçülmesi prensibi uyarınca sürekli laminer akış rejimine bağlı kalmalıdır. Bu durumda herhangi bir sıvı karışımı mümkün olmamaktadır.[9] Biyolojik algılama aygıtları için kullanılan MEMS yapılarını sınırlayan en önemli faktör ise yapının küçülmesi ile doğru orantılı olarak incelenen örneğin de küçülmesidir. Bu durum algılanabilecek partikül sayısını azalmasına neden olmakta ve MEMS tasarım çeşidini sınırlamaktadır.[10] Ayrıca kuvvet ölçümü içi kullanılan MEMS yapıları ise algımalama aygıtlarının çözünürlükleri ile sınırlanmıştır. Düşük ölçekli kuvvetlerin ölçümü esnasında kullanılan MEMS tasarımları algılama elemanlarının yetersizliği ve küçük boyutlarda sistemi domine eden ısıl düzensizlikler nedeni ile sınırlanmıştır.[11]

Geleceği

Mikro elektromekanik sistemler gelecek olarak kendilerini nano elektro mekanik sistemler olarak gösterdiler. Michael Roukes'e göre NEMS'ler 10 nm çapında ve birkaç attogram ağırlığında üretilebilmektedir.[12] Her ne kadar NEMS üretecek teknolojiler var olsa da, NEMS in tüm potansiyelini ortaya çıkarabilmek için aşılması gereken üç temel sorun var.

• Nano seviyedeki sinyallerin makroskopik ortama aktarılması.

• Nano düzeydeki ısıl iletimin quantize (parçalı) olması.

• Nano teknolojinin kitle üretimine adapte olması için henüz uygun yöntem geliştirilmemiş olması.

Sonuçlar

• Entegre devre sanayiinde yaşanan minimizasyon devrimini gelişen MEMS teknolojisi daha ileri taşıdı. Her ne kadar temelleri entegre devre üretiminin gelişimine bağlı olsa da MEMS ikinci bir devrim yaşanmasını sağladı.

• Mikro talaşlı imalat ve MEMS deki gelişim sayesinde sensör ve aktuatörlerin daha da küçültülmesi sağlandı.

• Sensör hassasiyet ve güvenilirliğinin yükselmesi, sensör uygulamalarını arttırdı ve üretilen ürünlerin daha güvenli olmasını sağladı.

• Sensör ve sistem maliyetlerindeki düşüş MEMS'in uygulama alanını genişletti.

Konu ile ilgili diğer başlıklar

  • NEMS, Nano elektro-mekanik sistemler MEMS yapılarına benzemekle birlikte çok daha küçük yapılardır
  • MOEMS, Mikro Opto-Elektrisel-Mekanik Sistemler optik elemanlar içeren MEMS yapıları
  • Mikromotor Silikondan oluşturulmuş mikron boyutundaki motorlar
  • IBM Millipede, MEMS yapılarının bilgi saklamak için düzenlenmiş bir versiyonu
  • Boyutsuz Yarı iletkenler basınç sensorleri ve ivme sensorleri için kullanılan bir yarı iletken geometrisi
  • Texas Instruments DMD chip üreticisi
  • ADI Dünyanın en önemli ivme sensörü üreticilerinden birisi
  • Lucent MEMSleri optik anahtarlar için kullanmaya başlayan ilk firma
  • Termal MEMS tahrik mekanizması MEMS aygıtlarının termal tahrik ile süren mekanizma
  • Voltaj modülatörü MEMS yapılarını belirli bir voltaj varyasyonu uygulayarak sürerken kullanılır.
  • Alcatel Micro Machining Systems Derin reaktif iyon oyma mekanizması üreticisi
  • Robert Bosch GmbH İvme ve basınç ölçmek için MEMS teknolojisini kullanarak araç üreticilerine tedarik ediyor
  • Qualcomm Qualcomm MEMS Technologies - MEMS teknolojilerini cep telefonları ve taşınabilir elektronik malzemeler için tasarlayan ve üreten bir firma
  • Finetech, MEMS yapılarının üretimi için aygıt tasarlayan bir firma
  • METU-MEMS, MEMS yapılarını kullanarak dönüölçer, ivme sensörleri ve kızılötesi detektörler konusunda araştırma yapan bir üniversite kuruluşu
  • UNAM, NEMS ve MEMS yapılarının tasarlanabildiği bir merkez

Dış bağlantılar

Kaynakça

  1. ^ M.C. Roco. “A Frontier for Engineering,”Mech.Eng.123, January, pp. 52–55, (2001).
  2. ^ M. Mehregany and S. Roy, Introduction to MEMS, 2000, Microengineering Aerospace Systems, El Segundo, CA, Aerospace Press, AIAA, Inc., (1999)
  3. ^ K. S. Chen, K. I. Lin, H. F. Ko, “Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies”, Journal of Micromechanics and Microengineering, 15, 1894-1903, (2005)
  4. ^ I. Z. Nikolay, What diffraction limit?, Nature Materials 7, 420 - 422 (2008)
  5. ^ Matsumoto K, Ishii M, Segawa K and Oka Y,Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanooxidation process for the TiOx/Ti system, Applied Physics Letters.68,34.(1996)
  6. ^ Madou, M. (1997)Fundamentals of Microfabrication, CRC Press, Boca Raton, FL.
  7. ^ W. B. Song, J. J. Talghader. “Design and characterization of adaptive microbolometers”, Journal of Micromechanics and Microengineering, 16, 1073-1079, (2006)
  8. ^ W. Ehrfeld et al. “Fabrication of microstructures using the LIGA process”, Proc.IEEE Micro Robots Teleoperators Workshop, (1987)
  9. ^ F.M. White. “Fluid Mechanics 4th edn”, (Boston, MA: McGraw-Hill), (1999)
  10. ^ A.J. Tobin, R.E. Morel. “Asking about Cells”, (Fort Worth, TX: Saunders), 1997
  11. ^ K.L Ekinci, Y.T. Yang, M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems”, Journal of Applied Physics, 95, 5, (2004)
  12. ^ M.L. Roukes. “Nanoelectromechanical Systems”, Tech. Digest. Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, (2000)

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Sensör</span>

Sensör,, fiziksel bir olayı tespit etmek amacıyla bir çıkış sinyali üreten cihazdır.

<span class="mw-page-title-main">Silikon</span>

Silikon veya polisiloksan, siloksanlardan (−R2Si−O−SiR2−, burada R = organik grup) oluşan bir polimerdir. Bunlar genellikle renksiz yağlar veya kauçuk benzeri maddelerdir. Silikonlar, dolgu macunlarında, yapıştırıcılarda, yağlayıcılarda, tıpta, pişirme kaplarında, ısı ve elektrik yalıtımında kullanılır. Bazı yaygın biçimler arasında silikon yağı, silikon gresi, silikon kauçuk, silikon reçine ve silikon kalafat bulunur.

<span class="mw-page-title-main">Nanoteknoloji</span> Maddenin atomik kontrolü

Nanoteknoloji, maddenin atomik, moleküler ayrıca supramoleküler seviyede kontrolüdür.

<span class="mw-page-title-main">Jiroskop</span> jiroskop, Türkçe adıyla düzdöner, yönü ölçmek veya elde etmek için kullanılır.

Jiroskop veya Türkçe adıyla düzdöner, dönüş ekseninin kendi kendine herhangi bir yönü kabul etmekte özgür olduğu dönen bir çark veya disktir. Açısal hız ve dengenin korumasına göre dönerken bu eksenin yönü devrilmeden veya dayanağın yönünden etkilenmez. Bundan dolayı jiroskoplar yönü ölçmek veya elde etmek için yararlıdır.

<span class="mw-page-title-main">Malzeme bilimi</span> yeni malzemelerin keşfi ve tasarımı ile ilgilenen disiplinlerarası alan; öncelikli olarak katıların fiziksel ve kimyasal özellikleriyle ilgilidir

Malzeme bilimi, malzemelerin yapı ve özelliklerini inceleyen, yeni malzemelerin üretilmesini veya sentezlenmesini de içine alan disiplinlerarası bir bilim dalıdır.

<span class="mw-page-title-main">Sismograf</span> Sismograf ölçüm cihazı

Sismograf ya da depremyazar,, depremler, volkanik patlamalar ve patlamaların neden olduğu yer seslerini ve sarsıntılarını sürekli olarak kaydederek yer sarsıntılarının büyüklüğünü, süresini, merkezini ve zamanını saptamaya yarayan alete denir. Genellikle sismograf ‘ın zamanlama ve kayıt cihazı vardır. Daha önce kağıda veya filme ama atık dijital olarak kaydedilen ve işlenen bu cihazın çıktısı bir sismogramdır. Bu tür veriler depremlerin yerini belirlemek ve karakterize etmek ve Dünya'nın iç yapısını incelemek için kullanılır.

<span class="mw-page-title-main">Fotodiyot</span> p-n bağlantısına dayalı fotodetektör türü

Fotodiyot, görünür ışık, kızılötesi veya ultraviyole radyasyon, X ışınları ve gama ışınları gibi foton radyasyonuna duyarlı bir yarı iletken diyottur. Fotodiyot, fotonları emdiğinde akım veya voltaj Fotovoltaikleri üreten bir PN yarı iletken malzemedir.Semiconductor Optoelectronics .

<span class="mw-page-title-main">Elektron demetiyle fiziksel buhar biriktirme</span>

Elektron demeti ile fiziksel buhar biriktirme işlemi, anottaki hedef malzemenin, çok yüksek vakum altında, tungsten bir flaman ile elektron bombardımanına tutulması ile gerçekleştirilir. Elektron demeti, hedefteki atomların yüzeyden koparak gaz fazına geçmesini sağlar. Buharlaştırılan bu atomlar, vakum çemberi içindeki her noktaya yapışarak ince bir film oluşmasını sağlarlar.

<span class="mw-page-title-main">Titanyum nitrür</span> güçlü ve aşınması zor bir şey bu yüzden çok üretilen bir şey ve azot bileşimidir

Titanyum nitrür, substratın yüzey özelliklerini iyileştirmek için genellikle titanyum alaşımları, çelik, karbür ve alüminyum bileşenler üzerinde fiziksel buhar biriktirme (PVD) kaplaması olarak kullanılan son derece sert bir seramik malzemedir.

<span class="mw-page-title-main">Kimyasal buhar biriktirme</span>

Kimyasal buhar biriktirme. Von Guerkie, sürtünme ile kıvılcım üreten kükürt topunu, eğlence amaçlı yapması bu prosesin başlangıcı sayılır. Birbirlerine sürterek kıvılcım çıkarmakta ve hidrojensülfat oluşturulmaktaydı. 1798'de Henry, hidrokarbon gazı içerisinde, kıvılcım yaratarak karbon biriktirme yapmayı başardı.

<span class="mw-page-title-main">Optik lif</span>

Optik lif(optical fiber) veya bilinen diğer adıyla ışıklifi(fiberoptic), yüksek kaliteli püskürtülmüş cam veya plastikten yapılmış olan esnek ve şeffaf bir lifdir. Kabaca insan saçından daha kalındır. Işığı lifin iki ucuna iletmek için bir ışık kılavuzluğu veya ışık borusu görevini görür. Işıkliflerin dizayn ve uygulaması ile ilgilenen uygulamalı bilim ve mühendislik dalı “fiber optik” olarak bilinir. Optik lifler, iletişimin diğer formlarına göre iletimin daha uzun mesafelerde ve daha geniş bant genişliği ile olmasına imkân veren “ışıklifi iletişim” alanında yaygın olarak kullanılır. Liflerin metal kablolar yerine kullanılmasının nedeni sinyallerin lifler üzerinde daha az kayıpla ilerlemesi ve aynı zamanda elektromanyetik engellerden etkilenmemesidir. Lifler aynı zamanda ışıklandırma için de kullanılır ve yığınlar halinde sarılır. Bu şekilde sınırlı alanlarda görüntülemeye imkân verecek şekilde görüntü taşımak için kullanılabilirler. Işıklifleri özel tasarlanmış lifli sensörler ve lifli lazerler dâhil, birçok değişik uygulama içinde de kullanılırlar.

<span class="mw-page-title-main">Ölçü aleti</span>

Ölçü aleti, fiziksel nicelik ölçmeye yarayan bir cihazdır. Fiziksel bilimler, kalite güvencesi ve mühendislikte kullanılan ölçme; gerçek şeylerin ve olayların, fiziksel niceliklerini elde etme ve kıyaslama etkinliğidir. Yerleşik standart nesneler ve olaylar ölçü birimleri olarak kullanılır ve ölçme işlemi; üzerinde çalışılan unsur ve bununla ilişkili ölçü birimi hakkında bir sayı verir. Ölçü aracının kullanımını tanımlayan araçlar ve formel test yöntemleri, elde edilen sayıların arasındaki ilişkilerin vasıtalarıdır.

Monokristalin silikon bugün hemen hemen her elektronik ekipmanda kullanılan mikroçipler için temel bir malzemedir. Monokristalin silikon fotovoltaikde, güneş hücrelerinde ışık emici madde olarak kullanılır.

Nanorobot bilimi, bir nanometre (10−9 metre) veya buna yakın ölçekli parçalar içeren makine veya robot yaratan gelişen bir teknoloji alanıdır. Daha özel bir deyişle, nanorobotics, 0,1-10 mikrometre ölçekli cihazlar ile nanoteknoloji mühendislik disiplini içinde nanorobotlar tasarlama ve inşa etmek ve aynı zamanda nano ölçekler ve moleküler bileşenler üretmektir. Nanobots, nanoids, nanites,nanomachines veya nanomites gibi özel isimlere sahip Türkçe anlamları cüce, nanomakina, böcekçik gibi anlamlara gelen bu isimler sürekli olarak araştırma ve geliştirme altında olan bu nanorobotları tanımlamak için kullanılırlar.Nanomakinalar büyük ölçüde araştırma v, e geliştirme aşamasında olmasına rağmen bazı ilkel moleküler makineler ve nanomotorlar test edilmiştir. Örneğin, yaklaşık 1,5 nanometre uzunluğundaki bir anahtara sahip bir sensör, bir kimyasal örnekteki özel moekülleri sayma yeteneğine sahiptir. Nanaomakinelerin ilk yararlı uygulamaları tıbbi teknoloji alanında; kanser hücrelerini tespit ve imha için olabilir. Bir diğer potansiyel uygulama alanı ise, ortamdaki zehirli kimyasalları tespit ve konsantrasyonunu ölçme olarak düşünülebilir. Rice üniversitesi kimyasal yollarla tek moleküllü ve jantları bucky küreleri içeren bir araba geliştirdi. Araba, çevre sıcaklığını kontrol ederek ve taramalı tünelleme mikroskobunu yerleştirerek çalıştırıldı.

Nanosensörler, nanoparçacıklarla ilgili bilgileri makroskopik dünyaya iletmek için kullanılan biyolojik, kimyasal ya da cerrahi sensör noktalarıdır. Temel olarak, çeşitli tıbbi amaçlarların yanı sıra nano robotlar ve nano ölçeklerde kullanılan bilgisayar çipleri gibi başka nano ürünlerin yapımında bir araç olarak kullanılırlar. Şu sıralar, nanosensör yapımı için önerilen pek çok yöntem vardır. Yukarıdan aşağı (top-down) litografi (baskı), aşağıdan yukarı düzenlenme (bottom-up) assembly, moleküler kendiliğinden düzenlenme(self assembly) bu yöntemlerden bazılarıdır.

Elektrooptik sensör, ışığı dönüştüren veya bir elektronik sinyal halinde ışıktaki değişimi sağlayan elektronik detektörlerdir. Bu sensörler birçok endüstriyel ve tüketici alanlarda kullanılır. Örneğin:

<span class="mw-page-title-main">Vakum haznesi</span>

Vakum haznesi, içindeki havanın vakum pompası ile boşaltıldığı, bükülmeyen bir kutudur. Hazne içerisinde düşük basınç ortamı sonucunda, genellikle vakum olarak ifade edilmektedir. Vakum ortamı araştırmacılar için fiziksel deneyler ya da dış uzayda çalışması istenen cihazların mekanik testleri veya vakum kurutma ya da vakum kaplama işlemleri için uygun ortam sağlar. Hazneler tipik olarak, kullanılan malzemenin geçirgenlik, direnç, frekans ve duvar kalınlığına bağlı olarak dış manyetik alanlara karşı koruma olup olmamasına göre metallerden yapılmaktadır. Yalnızca bazı metaller vakum kullanımı için uygundur. Hazneler, genellikle çoklu bağlantı yapısına sahip, vakum flanşları ile kaplı olup haznenin duvarlarına aygıt ve pencere takılabilir olmasına izin verir. Düşük-Orta Vakum uygulamarında elastomer contalar ile mühürlüdür. Daha Yüksek Vakum Uygulamalarında, Bakır conta kesilip Flanş üzerinde civatalanmışken flanşların üzerlerine sertleştirilmiş çelik bıçaklar kaynaklanır.

<span class="mw-page-title-main">Baryum sülfat</span> inorganik bileşik

Baryum sülfat BaSO4 formüllü inorganik bileşik. Bu beyaz kristal katı renksizdir ve suda çözünmez. Barit halinde bulunur.

Seviye sensörleri, sıvıların ve sıvılaştırılmış katıların, bulamaçların, tanecikli malzemelerin ve üstünde serbest yüzeyli tozlar dahil olmak üzere sıvılaştırılmış katıların seviyesini algılar. Akan maddeler, yerçekimi nedeniyle kaplarında esasen yatay hale gelirken, çoğu dökme katı, bir tepe noktasına bir durma açısında yığılır. Ölçülecek madde bir kabın içinde olabilir veya doğal halinde olabilir. Seviye ölçümü sürekli veya noktasal değerler olabilir. Sürekli seviye sensörleri, belirli bir aralıktaki seviyeyi ölçer ve belirli bir yerdeki tam madde miktarını belirlerken, nokta seviye sensörleri yalnızca maddenin algılama noktasının üstünde mi yoksa altında mı olduğunu gösterir. Genellikle ikincisi, aşırı yüksek veya alçak seviyeleri tespit eder.

Nanotop piller, karbon ve lityum demir fosfat gibi çeşitli malzemelerden oluşabilen nano boyutlu toplardan yapılmış katot veya anotlu deneysel bir pil türüdür. Nanoteknoloji kullanan piller, artırılmış yüzey alanları nedeniyle hızlı şarj ve deşarj gibi yüksek performansa izin pillerdir.