İçeriğe atla

Merkle-Hellman kripto sistemi

Merkle-Hellman kripto sistemi, 1978 yılında Martin Hellman ve Ralph Merkle tarafından geliştirilen ilk açık anahtarlı kriptosistemlerden biridir.[1] RSA'dan daha hızlı gerçekleştirilebilmesine rağmen Adi Shamir tarafından 1982'de güvensiz olduğu gösterilmiştir.[2]

Tanım

Merkle-Hellman asimetrik anahtarlı bir kripto sistemdir; bunun anlamı, iletişim için iki anahtara ihtiyaç vardır. Bir Açık ve bir Gizli Anahtar. Ayrıca, RSA'dan farklı olarak, tek yönlüdür -Açık Anahtar sadece şifreleme ve Gizli Anahtar sadece deşifreleme için kullanılır. Böylece bu yöntem Dijital imzalama tarafından kimlik kanıtlama için kullanılamaz.

Merkle-Hellman sistemi altküme toplamı problemini (sırt çantası probleminin özel bir durumu) temel alır.Problem şu şekilde devam eder:

Belirlenmiş A kümesi ve bir b sayısı, b nin toplamlarından oluşan A nın bir altkümesi.Bununla birlikte eğer sayı kümesi süper artan ise -şöyle ki; sayı kümesinin her bir elemanı önceki sayıların tamamının toplamından daha büyük olmalı - problem Greedy algoritması ile beklenen zamanda ve kolayca çözülebilir.


Anahtar üretimi

Merkle-Hellman algoritmasında, anahtarlar birer sırt çantalarıdır. Açık anahtar A nın "kolayca kırılamayan" sırt çantasıdır ve Gizli Anahtar da B nin "basit" ya da süper artan bir sırt çantası, bir çarpan ve bir modülden oluşan iki ek sayının birleşimidir. Çarpan ve modül, süper artan sırt çantasından kolay kırılamayan sırt çantasına çevirmede kullanılabilir. Eğer, problem beklenen zamanda çözülebilirse; Aynı sayılar kolay kırılamayan sırt çantasının altküme toplamının basit sırt çantasının altküme toplamına çevrilmesinde kullanılabilir.

Şifreleme

Mesajı şifrelemek için; A'nın kolay kırılamayan sırt çantasının altkümesinden seçilen anahtar uzunluğunda bit kümesi ile karşılastırılır. Açık anahtardaki her bir terim, düz metindeki bir elemanı A_m altkümesinin bir elemanını karşılar, düz metindeki 0 A_m kümesinin inşa edilmesini göz ardı eder.Bu altkümenin elemanları toplanmış ve toplamanın sonucu şifrelenmiş metindir.

Deşifreleme

Deşifreleme mümkündür; çünkü çarpan ve modül kolayca çevrilebilir, süper artan sırt çantasındaki acık anahtar,böylece süper artan sırt çantasındaki elemanların karşılandığı toplamdaki şifreli metin sayı dönüştürme çevriminde kullanılabilir. Sonra; basit bir Greedy Algoritması kullanılarak, basit sırt çantası Büyük o gösterimindeki aritmetik operatörler kullanılarak çözülür. Böylece mesaj deşifrelenmiş olur.

Matematiksel metot

Anahtar üretimi

n bitten oluşan mesajı şifrelemek için süperartan bir dizi seçilir:

        w = (w1, w2, ..., wn)   n sıfırdan farklı doğal sayı. 

q gibi bir rastgele sayı seçilir:

         ve r gibi rastgele bir sayı seçilir:
        Ortak bölen(r,q) = 1 (r ve q  Aralarında asal)

q nun böyle seçilmesi şifrelenmiş metnin benzersiz olmasını sağlar. Eğer q düz metinden daha küçük seçilirse, aynı şifrelenmiş metinler elde edilebilir. r ile q aralarında asal olmalıdır yoksa mod q göre tersine çevrilemeyecektir. q nun tersinin olması gereklidir. Böylece deşifreleme yapılabilir.
Şimdi diziyi hesaplayalım:
β = (β1, β2, ..., βn)
βi = rwi mod q.
Açık Anahtar β ve Gizli Anahtarlar (w, q, r) dir.

Şifreleme

n bit mesajı şifrelemek için

α = (α1, α2, ..., αn),

mesajın i. biti ve {0, 1}

Şifrelenmiş metin c dir.

Deşifreleme

Deşifreleme amacıyla alınan bir c şifreli mesajı, gibi bir biti ile şu şekilde uyuşur.


βi rastgele değerler aldığından dolayı bu zor bir problem olabilir. Çünkü alıcı alt küme probleminin örnek bir çözümüne sahip olmalıdır.
Anahtar Şifreleme, s tam sayılarını r mod q nun modüler tersinden bulmaktır. Bunun anlamı, s r mod q=1 den s yi ya da s'r=k'q+1 k gibi bir tam sayı bulmaktır. r, Ortak bölen(r,q) = 1 den seçildiğinden Extended Euclidean algorithm kullanılarak k ve s bulunabilir. Alıcı c şifreli metnini hesaplar:
Bu yüzden

Çünkü rs mod q = 1 ve βi = rwi mod q

Bu yüzden

Bütün wi değerlerinin toplamı q dan küçüktür ve bu yüzden , [0,q-1] aralığındadır. Böylece alıcı alt küme problemini çözmüş olur.

Örnek

İlk olarak süper artan bir dizi olan w yi oluşturalım:

w = {2, 7, 11, 21, 42, 89, 180, 354}

Bu Gizli Anahtar için temeldir. Buradan toplamı hesaplayalım:

Sonra toplamdan büyük bir q sayısı seçelim:

q = 881

Ayrıca, aralığında q ile Aralarında asal bir r sayısı seçelim:

r = 588
q, w ve r den oluşan Gizli anahtarımız oluşmuş oldu.

w kümesinin her bir elemanını rmodq ile çarparak β kümesini üretiyoruz:

β = {295, 592, 301, 14, 28, 353, 120, 236}
Çünkü
2 * 588 mod 881 = 295
7 * 588 mod 881 = 592
11 * 588 mod 881 = 301
21 * 588 mod 881 = 14
42 * 588 mod 881 = 28
89 * 588 mod 881 = 353
180 * 588 mod 881 = 120
354 * 588 mod 881 = 236

β kümesi ile Açık Anahtarımızı oluşturmuş olduk.
Ayşe "a" yı şifrelemek istediğini söylesin. İlk önce Ayşe "a" nın ikili tabandaki değerini bulmalıdır (bu durumda, ASCII ya da UTF-8 kullanılmalıdır).

01100001

Ayşe sırasıyla her bir biti β kümesindeki eşleşen her bir elemanla çarpmalıdır.
a = 01100001

0 * 295
+ 1 * 592
+ 1 * 301
+ 0 * 14
+ 0 * 28
+ 0 * 353
+ 0 * 120
+ 1 * 236
= 1129

Bunu alıcıya göndermelidir. Ali, deşifrelerken bu sayıyı r −1 mod ile çarpmalıdır (Modular multiplicative inverse).
1129 * 442 mod 881 = 372
Şimdi Ali, 372 den; w kümesinden seçilen 372 ye eşit ya da 372 den küçük en büyük sayıyı çıkararak en son fark oluncaya kadar işleme devam edilir.

372 - 354 = 18
18 - 11 = 7
7 - 7 = 0

Seçtiğimiz elemanların yerine 1 yazdığımızda ortaya gönderilen mesajın ikili karşılığı çıkmış olur.
01100001
Bu ikili kod geri çevrildiğinde, Ayşe'nin Ali'ye yolladığı "a" mesajına ulaşmış oluruz.

Kaynakça

  1. ^ Merkle, Ralph; Hellman, Martin (1978). "Hiding information and signatures in trapdoor knapsacks". IEEE Transactions on Information Theory. 24 (5). ss. 525-530. doi:10.1109/TIT.1978.1055927. 
  2. ^ Shamir, Adi (1984). "A polynomial-time algorithm for breaking the basic Merkle - Hellman cryptosystem". IEEE Transactions on Information Theory. 30 (5). ss. 699-704. doi:10.1109/SFCS.1982.5. 

İlgili Araştırma Makaleleri

RSA, güvenliği tam sayıları çarpanlarına ayırmanın algoritmik zorluğuna dayanan bir tür açık anahtarlı şifreleme yöntemidir. 1978’de Ron Rivest, Adi Shamir ve Leonard Adleman tarafından bulunmuştur. Bir RSA kullanıcısı iki büyük asal sayının çarpımını üretir ve seçtiği diğer bir değerle birlikte ortak anahtar olarak ilan eder. Seçilen asal çarpanları ise saklar. Ortak anahtarı kullanan biri herhangi bir mesajı şifreleyebilir, ancak şu anki yöntemlerle eğer ortak anahtar yeterince büyükse sadece asal çarpanları bilen kişi bu mesajı çözebilir. RSA şifrelemeyi kırmanın çarpanlara ayırma problemini kırmak kadar zor olup olmadığı hala kesinleşmemiş bir problemdir.

<span class="mw-page-title-main">Açık anahtarlı şifreleme</span> hem herkese açık hem de gizli anahtarları kullanarak yapılan şifreleme

Açık anahtarlı şifreleme, şifre ve deşifre işlemleri için farklı anahtarların kullanıldığı bir şifreleme sistemidir. Haberleşen taraflardan her birinde birer çift anahtar bulunur. Bu anahtar çiftlerini oluşturan anahtarlardan biri gizli anahtar diğeri açık anahtardır. Bu anahtarlardan bir tanesiyle şifreleme yapılırken diğeriyle de şifre çözme işlemi gerçekleştirilir. Bu iki anahtar çifti matematiksel olarak birbirleriyle bağlantılıdır.

<span class="mw-page-title-main">Sırt çantası problemi</span>

Sırt çantası problemi bir klasik yöneylem araştırması ve matematiksel olarak "kombinatorik optimizasyon" problemidir. Çözüm algoritması bakımından sırt çantası problemi en ünlü NP-hard problemleri arasındadır.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

ElGamal şifrelemesi, Diffie-Hellman anahtar alış-verişi'ne dayanan bir asimetrik şifreleme algoritması olup Taher Elgamal tarafından 1984 yılında önerilmiştir.

Fermi-Dirac istatistikleri, fizik biliminin bir parçası olarak Pauli dışlama prensibine uyan eş parçacıkları içeren sistemdeki bir parçacığın enerjisini tanımlar. Birbirlerinden bağımsız olarak bunu keşfeden Enrico Fermi ve Paul Dirac'tan sonra adlandırılmıştır.

<span class="mw-page-title-main">Dijital İmza Algoritması</span>

Dijital İmza Algoritması dijital imza için bir FIPS standardıdır. Ağustos 1991'de National Institute of Standards and Technology (NIST) tarafından tasarlanmıştır. Dijital imza algoritması, ElGamal İmza Algoritması'nın bir varyantıdır.

ElGamal imza şeması Ayrık Logaritmanın hesaplanmasının zorluğuna dayanan bir dijital imzadır. Tahir el-Cemal tarafından 1984 yılında bulunmuştur. Açık anahtarlı kriptosistemi ve imza şeması ayrık logaritmaya dayanmaktadır.

Rabin şifreleme sistemi, Rabin kriptoloji veya Rabin kriptosistemi, güvenliği RSA'daki gibi tam sayı çarpanlarına ayırmanın zorluğu üzerine kurgulanmış olan asimetrik bir kriptografik tekniktir. Bununla birlikte, Rabin kriptosisteminin avantajı, saldırgan tam sayıları verimli bir şekilde çarpanlarına ayıramadığı sürece, seçilmiş bir düz metin saldırısına karşı hesaplama açısından güvenli olduğu matematiksel olarak kanıtlanmıştır, oysa RSA için bilinen böyle bir kanıt yoktur. Rabin fonksiyonunun her çıktısının dört olası girdiden herhangi biri tarafından üretilebilmesi dezavantajı; her çıktı bir şifreli metinse, olası dört girdiden hangisinin gerçek düz metin olduğunu belirlemek için şifre çözmede ekstra karmaşıklık gerekir.

Paillier şifrelemesi , 1999’da Pascal Paillier tarafından geliştirilen olasılıksal açık anahtarlı şifreleme yöntemidir. n’inci kök sınıflarını hesaplamanın zorluğunu kullanan Paillier şifreleme sistemi, kararsal bileşik kök sınıfı varsayımı üzerine kurulmuştur. Sistem, toplama işlemine göre homomorfik özellik gösterir; yani sadece açık anahtarı, ve ’nin şifrelemesini kullanarak ’nin şifrelenmiş hâli hesaplanabilir.

Blum–Goldwasser Kriptosistem veya Blum-Goldwasser şifreleme sistemidir. 1984 yılında Manuel Blum ve Şafi Goldwasser tarafından önerilen bir asimetrik anahtar şifreleme algoritmasıdır. Bulum-Goldwasser bilinen en verimli kripto sistemlerden biridir. RSA ile hız ve mesaj genişlemesi açısından kıyaslanabilir. Bu şifreleme algoritmasında rastgele sayı üretmek için Blum Blum Shub rastgele sayı üretme algoritması kullanılır. Büyük sayıların asal çarpanlarına ayrılma probleminin çözülemezliği kabulüne dayanan bir şifreleme algoritmasıdır.

Goldwasser–Micali (GM) kriptosistemi 1982 yılında Shafi Goldwasser ve Silvio Micali tarafından geliştirilmiş bir asimetrik anahtar şifreleme algoritmasıdır. GM standart kriptografik varsayımlar altında güvenliği kanıtlanmış ilk probabilistik açık anahtar şifreleme yöntemidir. Bununla birlikte başlangıç düz metinden yüzlerce kez daha geniş olan şifreli metinler olduğundan verimli bir kriptosistem değildir. Kriptosistemin güvenlik özelliğini kanıtlamak için Shafi Goldwasser ve Silvio Micali anlamsal güvenliğin geniş alanda kullanılan bir tanımını önerdiler.

<span class="mw-page-title-main">Diffie-Hellman anahtar değişimi</span> dünyanın enyuksek dagı

Diffie-Hellman anahtar değişimi (D-H), kriptografik anahtarların değişiminde kullanılan özel bir yöntemdir. Bu kriptografi alanında uygulanan ilk pratik anahtar değişimi örneklerinden biridir. Diffie-Hellman anahtar değişimi metodu, güvenilmeyen bir sistem üzerinden iletişim kurmak isteyen karşılıklı iki tarafın ortaklaşa bir anahtar üzerinde karar kılabilmesine olanak sağlar. Böylece, iki tarafın da karar kıldığı bir simetrik anahtar, güvenli olmayan sistem üzerinden iletişimi şifrelemek için kullanılabilir. Diffie-Hellman protokolünde amaç, iletişim kurmak isteyen iki taraf arasındaki anahtar değişim prosedürünü, anahtarın kötü tarafların eline geçmediğine emin olacak şekilde güvenli bir şekilde gerçekleştirmektir. Bu işlem bir defa yapıldığında ve taraflar bir anahtar üzerinde ortaklaştığında her iki taraf da kendi mesajını paylaşılan anahtarla şifreleyebilir, böylece taraflar arasındaki iletişim güvenli bir şekilde sağlanmış olur.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Özel fonksiyonların önemli bir bölümünü oluşturan hipergeometrik fonksiyonlar matematik, fizik, mühendislik ve olasılıkta karşımıza çıkar.

Schmidt-Samoa şifreleme, Alman araştırmacı Katja Schmidt-Samoa tarafından 2005’te oluşturulan asimetrik kriptografi yöntemidir. Bu şifrelemenin güvenilirliği Rabin'deki gibi çarpanlara ayırma probleminin zorluğuna dayanmaktadır. Bu algoritma, Rabin'in aksine şifreleme hızı pahasına, şifre çözmede belirsizlik oluşturmamaktadır.

Kriptografide Eliptik Eğri Dijital İmza Algoritması (ECDSA), eliptik eğri şifrelemesi kullanan birçok çeşit Dijital İmza Algoritması (DSA) sunar.

Benaloh kriptosistemi 1994 yılında Josh (Cohen) Benaloh tarafından oluşturulan Goldwasser-Micali şifreleme sisteminin bir genişletilmesidir. Goldwasser-Micali'de bitler tek tek şifrelenirken, Benaloh Kriptosisteminde veri blokları grup olarak şifrelenmektedir. Orijinal makaledeki küçük bir hata Laurent Fousse et al. 'da düzeltilmiştir.

Matematikte Euler sayıları, Taylor serisi açılımıyla tanımlanan bir En tam sayı dizisidir..