İçeriğe atla

Merkezî limit teoremi

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin (eğer sonlu varyans değerleri bulunuyorsa) aritmetik ortalamasının, yaklaşık olarak normal dağılım (yani Gauss dağılımı) göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

Pratik gerçekte birçok anakütle, sonlu varyans gösteren dağılımlar ortaya çıkardıkları için, bu teorem normal olasılık dağılımının önemini açığa çıkartır.

Bu teoreminin kapsamını genişletip sonuçlarını genelleştiren eklere göre (Lindeberg koşulu, Lyapunov koşulu, Gnedenko durumu ve Kolmogorov durumu) sonlu varyans gösterme için mutlaka aynı dağılım gerekmemektedir.

Tarihçe

Tijms'in yazdığına göre:[1]

Merkezi limit teoreminin tarihi gelişmesi çok enterasandır. Bu teoremin ilk şekli Fransız matematikçi Abraham de Moivre tarafından 1733'te yayınlanarak gayet dikkati çeken bir yazıda bulunmakta ve bu yazıda bir yansız madeni paranın yazı-tura atış sonuçların da kaç defa yazı gelme sayısının dağılımının bir normal dağılım ile yaklaşık olarak açıklanabileceğini ortaya çıkartmıştır. Bu gelişme zamanı için çok zor görünüp neredeyse unutulmuştur. Bu unutulmuş konu tanınmış Fransız matematikçisi Pierre-Simon Laplace'ın 1812'de yayınladığı çok tanınmış eseri Thoerie Analytique des Probabilites (Olasılıklar İçin Analitik Kuram)'da yeniden ortaya çıkarılmıştır; Laplace, De Moivre'in buluşunu daha da geliştirerek binom dağılımlarının yaklaşık olarak normal dağılım ile ifade edilip hesaplanabileceği sonucunu ortaya atmıştır. Ancak De Moivre gibi Laplace gelişmeleri de yaşadığı çağda çok az dikkati çekmiştir. Sonunda 19. yüzyılın içinde merkezi limit teoreminin önemi anlaşılmış ve 1901 Rus matematikçisi Aleksandr Lyapunov bu teoremi genel bir şekilde açıklamış ve matematik olarak nasıl ortaya çıktığını çok kesin bir şekilde ispatlamıştır. Bugün merkezi limit teoremi olasılık kuramının en önemli ögesi, gayriresmî kralı, olduğu kabul edilmektedir."

[2]

Klasik merkezi limit teoremi

Merkezi limit teoremi olasılık kuramı için ikinci temel teorem olarak kabul edilmektedir. (Birinci temel teorem büyük sayılar yasasıdır.) , tane bağımsız ve aynı şekilde sonlu sayıda ve ortalamasıyla ve varyansıyla dağılım gösteren rassal değişkenler olsun. Merkezi limit teoremine göre, değişken sayısı artarak sonsuza yaklaştıkça, orijinal dağılım her ne şekilde olursa olsun, ortalaması ve varyansı olan, bir normal dağılıma yakınsama gösterir.

Rassal değişkenlerin ile ifade edilen toplamı şöyle verilsin:

ve

bir standart normal ortalamalı ve varyanslı standart normal dağılım olsun.

Bu yakınsama teoremine göre limitte , 'nin dağılımı olan dağılımı standart normal dağılımına yaklaşır.

Bu demektir ki; eğer , dağılımının yığmalı dağılım fonksiyonu ise o halde her reel sayısı için

veya,

olur. Burada

örneklem ortalaması olur.

Yillarca, büyük örneklem hacmi pratik olarak olarak kabul edilmekteydi. Fakat 1990'lı yıllarda yapılan araştırmalar ortaya çıkarmıştır ki bu pratik kural her zaman geçerli değildir. Anakütle ne kadar çok çarpıklık gösterirse gereken büyük örneklem hacminin gittikçe daha büyük olması gerekmektedir. Bu şekilde çarpıklık gösteren anakütleler pratikte çok nadir bulunabilirler. Bu pratik kurala dayanan ve çıkarımsal istatistik için kullanılan Student'in t dağılımı tablolarına ancak verilmektedir ama simülasyon ve bilgisayar animasyonu ile gösterilmiştir ki Student'in t dağılımı tabloları için seçilen en yüksek örneklem hacmi olan yeterli büyüklükte değildir.[3][4]

Merkezi limit teoreminin ispatı

Olasılık kuramı ve istatistik bilimleri için temel önem taşıyan merkezi limit teoremi'nin ispatı karakteristik fonksiyonu kullanarak kolayca yapılabilir. Bu ispat zayıf büyük sayılar yasasını ispat etmek için kullanılan yönteme çok benzemektedir.

Sıfır ortalamaya ve birim varyansa sahip herhangi bir rassal değişken alalım (yani ); Taylor teoremi kullanılarak, için karakteristik fonksiyonun şu olduğu bilinir:

Burada ifadesinden daha hızlı sıfıra yaklaşan herhangi bir için olur. ifadesini standardize edilmiş değeri yani olarak koyalım. Bu halde gözlem noktalarının standardize edilmiş ortalaması

olur. Karakteristik fonksiyonun basit niteliklerine dayanarak, için karakteristik fonksiyonun

olduğu çıkartılır. Bu limit ise açıkça standart normal dağılımı için karakteristik fonksiyondur ve merkezi limit teoremi, karakteristik fonksiyonların yakınsamasının dağılımın yakınsamasına eşit olduğunu bildiren Levy süreklilik teoremi kullanarak ispat edilmiş olur.

Limite yakınsama

Eğer üçüncü merkezsel moment E((X1 − μ)3) bulunuyorsa ve sonlu ise, yukarıda açıklanan yakınsalaşma Berry-Eseen teoremi ile yakınsalaşma hızı asgari 1/n½ olur. Yakınsalaşma normali monotoniktir yani 'nin enformasyon entropisi bir normal dağılım entropisine monotonik olarak yakınsalaşır.

Bir dağılımın toplama ile "düzgünleştirilmesi" için grafikler orijinal olasılık dağılım fonksiyonu ve diğer üç (dağılım fonksiyonların konvolusyonu ile elde edilen) toplama için şu grafiklerde görülür:

Merkezi limit teoreminin bir grafiksel temsili bir anakütlenin rassal ortalamalarının grafiği ile gösterilebilir. Bir An alalım ve bu bir rassal örneklem için örneklem ortalaması ve her bir örneklemden tek bir rassal değişken de Xn olsun:

An = (X1 + ... + Xn) / n

1den verilen bir örneklem hacmine kadar An ifadesini bulalım:

A1 = (X1) / 1

A2 = (X1 + X2)/ 2

A3 = (X1 + X2 + X3)/3

Merkezi limit teoremi için ortalamaları örneklem hacmi 90a kadar yani 30 nokta olarak gösterilmesi gerekir. Eğer An

Zn = (An − μ) / (σ / n½)

kullanılarak standartize edilirse, yukarıda verilen Zn değişkeninin aynısı ortaya çıkar ve bu bir standart normal dağılımına yakınsanır.

Merkezi Limit teoremi sonlu sayıda gözlemler için bir tahmin olarak kullanılması gerek bu sayılar normal dağılımın zirvesi etrafında toplanırsa iyi sonucdur; dağılımın kuyruklarında olan gözlemler için bu tahminin yeterince doğru olması için çok sayıda gözlem elde edilmesi gerekir.

Merkezi Limit Teoremi özellikle bağımsız ve aynen dağılım gösteren ayrık rassal değişkenler için uygulanır. Ayrık rassal değişken için bir toplama ile elde edilen değerde bir ayrık rassal değişkendir ve böylece bir seri ayrık rassal değişken için tek tek yığmalı olasılık dağılım fonksiyonu bir sürekli değişken için bir yığmalı olasılık dağılım fonksiyonua (yani normal dağılıma) yakınsalaşır.

Bu demektir ki eğer n sayıda bağımsız ve özdeş ayrık değişkenlerin toplamının gerçekleşmelerinin bir histogramını kurarsak, histogramı şekillendiren dikdörtgenlerin yukarı yüzlerinin merkezlerini birleştiren eğri, n' değerine yakınsalaştıkça, bir Gauss-tipi çan eğrisine gittikçe benzemeye başlar. Basit sadece iki değer alan bir ayrık değişkeni içeren binom dağılımı gösterdiği simüle edilen bir halde bile bu merkezi limit teoremi uygulandığı görülebilir.

Büyük sayılar yasasına ilişkisi

Hem büyük sayılar yasası hem de Merkezi Limit Teoremi daha genel bir problemin kısmı çözümleri olmaları çok olasıdır. Bu genel problem şöyle ifade edilebilir: "Eğer n sonsuz değere yakınsamaktaysa Sn ifadesinin yakınsama davranışı ne olur?". Matematik analizde bu çeşit sorulara yaklaşmak için en popüler matematik araç asimtotik seriler konumuna dayanır.

f(n) fonsksiyonunun asimtotik genişletilmesin şu olduğunu kabul edelim:

Bu ifadenin her iki tarafını da ile bölersek ve limit alırsak, en fonksiyonunun en baştaki terimin değişme haddini temsil eden, genişletilmenin en yüksek-sıradaki katsayısı olan ifadesini üretiriz:

Formel olmadan bu şöyle açıklanabilir: "fonksiyon ile onu yakalsık olarak ifadenin arasındaki fark haddinde büyür". Bu kavramın ana sonucu şöyledir: fonksiyonu uygun bir yaklaşık veren normalize eden fonksiyonlar ile bölersek ve bu sonucun limitteki davranışına bakarsak, bu netice orijinal fonksiyonun limitteki davranışı hakkında epeyce çok açıklama yapar.

Sn ifadesinin klasik olasılık teoride incelenmesinde de aynı usulde açıklama yapılmaktadır. Belirli düzenleme koşulları altında, eğer ifadesi olarak dağılım gösterirse, hem Büyük Sayılar Yasası yani

hem de Merkezi Limit Teoremi yani

şu formel olmayan ifadenin ilk iki sabitlerinin değerlerini verirler:

Eğer X1, X2, X3, ... bağımsız ve özdeş ifadeler ise ve belli bir için ifadesi geçerli ise, o zaman

olur ve böylece sıfır olmayan limitleyici davranışı temin eden bir normalize etme fonksiyonu hizmetini gören n nin en yüksek üssü olur. "Takrarlanan logaritma yasası" ise çok ilgi çekici olarak, normalize edici fonksiyonun, Büyük Sayılar Yasası için n ile Merkezi Limit Teoremi için ifadeleri arasında olduğunu bildirir ve bu iki teorem ifadesi de bu değerin iki tarafında bulunan limitleri gösterir demektedir.

Teoremin alternatif şekillerde ifade edilmesi

Yoğunluk fonksiyonları

Pozitif rassal değişkenlerinin çarpımları

Lyapunov koşulu

Main: Lyapunov'un merkezsel limit teoremi.

Lindeberg koşulu

Uygulamalar ve örneğinler

Sinyal işleme

Ayrıca bakınız

Notlar

  1. ^ Henk Tijms, Understanding Probability: Chance Rules in Everyday Life 6 Mayıs 2021 tarihinde Wayback Machine sitesinde arşivlendi., (s. 169), Cambridge: Cambridge University Press, 2004.
  2. ^ Merkezi limit teoreminin gelişmesinin çok geniş ayrıntıları ile açıklanması, özellikle Laplace'in teoreminin temelleri hakkındaki çalışmaları ve Cauchy, Bessel ve Poisson'un katkıları Hald tarafından incelemektedir. Bakınız: Andreas Hald, History of Mathematical Statistics from 1750 to 1930 18 Temmuz 2011 tarihinde Wayback Machine sitesinde arşivlendi., Ch.17.
  3. ^ Bakın "Identification of Misconceptions in the Central Limit Theorem and Related Concepts and Evaluation of Computer Media as a Remedial Tool" Yu, Chong Ho ve Dr. John T. Behrens, Arizona State University ve Spencer Anthony, Univ. of Oklahoma: "American Educational Research Association" Yıllık Toplantısı için makale. Sunma tarihi: 19 Nisan, 1995 ve revizyon: 12 Şubat, 1997, CWisdom-rtf 5 Aralık 2008 tarihinde Wayback Machine sitesinde arşivlendi.(Erişme:25.10.2007).
  4. ^ Marasinghe, M., Meeker, W., Cook, D. & Shin, T.S.(1994 August), "Using graphics and simulation to teach statistical concepts", American Statistician Association'un, Toronto, Kanada 1994 yılı için yıllık konferansına sunulan bir makale.

Kaynakça

  • Henk Tijms (2004), Understanding Probability: Chance Rules in Everyday Life 6 Mayıs 2021 tarihinde Wayback Machine sitesinde arşivlendi., Cambridge: Cambridge University Press.
  • S. Artstein, K. Ball, F. Barthe ve A. Naor, (2004) "Solution of Shannon's Problem on the Monotonicity of Entropy", Journal of the American Mathematical Society C.17, say. 975-982 .
  • S.N.Bernstein (1945), On the work of P.L.Chebyshev in Probability Theory, Nauchnoe Nasledie P.L.Chebysheva. Vypusk Pervyi: Matematika. (Rusca) [The Scientific Legacy of P. L. Chebyshev. First Part: Mathematics] Editor S. N. Bernstein.] Academiya Nauk SSSR, Moscow-Leningrad, 174 say.
  • G. Rempala ve J. Wesolowski, (2002) "Asymptotics of products of sums and U-statistics", Electronic Communications in Probability, C. 7, say. 47-54.

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Student'in t dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Ki-kare dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

<span class="mw-page-title-main">Totient</span>

Totient sayılar teorisinde, bir tam sayının o sayıdan daha küçük ve o sayı ile aralarında asal olan sayma sayı sayısını belirten fonksiyondur. Genellikle Euler Totient ya da Euler'in Totienti olarak adlandırılan Totient, İsviçreli matematikçi Leonhard Euler tarafından yaratılmıştır. Totient fonksiyonu, Yunan harflerinden ile simgelendiği için Fi fonksiyonu olarak da anılabilir.

Hipotez testi, bir hipotezin doğruluğunun istatistiksel bir güvenilirlik aralığında saptanması için kullanılan yöntem.

Korelasyon, olasılık kuramı ve istatistikte iki rassal değişken arasındaki doğrusal ilişkinin yönünü ve gücünü belirtir. Genel istatistiksel kullanımda korelasyon, bağımsızlık durumundan ne kadar uzaklaşıldığını gösterir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Standart sapma</span> İstatistikte bir varyasyon ölçüsü

Standart sapma, Olasılık kuramı ve istatistik bilim dallarında, bir anakütle, bir örneklem, bir olasılık dağılımı veya bir rassal değişken, veri değerlerinin yayılımının özetlenmesi için kullanılan bir ölçüdür. Matematik notasyonunda genel olarak, bir anakütle veya bir rassal değişken veya bir olasılık dağılımı için standart sapma σ ile ifade edilir; örneklem verileri için standart sapma için ise s veya s'

İstatistik bilim dalında D'Agostino'nun K2 sınaması normal dağılımdan ayrılmayı ölçmek için kullanılan bir uygulama iyiliği ölçüsüdür. Örneklem basıklık ve çarpıklık ölçülerinin dönüşümlerinden elde edilmiştir. K2 istatistiği şöyle elde edilir:

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

<span class="mw-page-title-main">Büyük sayılar yasası</span>

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

<span class="mw-page-title-main">Log-normal dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında log-normal dağılım logaritması normal dağılım gösteren herhangi bir rassal değişken için tek-kuyruklu bir olasılık dağılımdır. Eğer Y normal dağılım gösteren bir rassal değişken ise, bu halde X= exp(Y) için olasılık dağılımı bir log-normal dağılımdır; aynı şekilde eğer X log-normal dağılım gösterirse o halde log(X) normal dağılım gösterir. Logaritma fonksiyonu için bazın ne olduğu önemli değildir: Herhangi iki pozitif sayı olan ab ≠ 1 için eğer loga(X) normal dağılım gösterirse, logb(X) fonksiyonu da normaldir.

<span class="mw-page-title-main">Cauchy dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.

İstatistik bilim dalında ağırlıklı ortalama betimsel istatistik alanında, genellikle örneklem, veri dizisini özetlemek için bir merkezsel konum ölçüsüdür. En çok kullanan ağırlıklı ortalama tipi ağırlıklı aritmetik ortalamadır. Burada genel olarak bir örnekle bu kavram açıklanmaktadır. Değişik özel tipli ağırlıklar alan özel ağırlıklı aritmetik ortalamalar bulunmaktadır. Diğer ağırlıklı ortalamalar ağırlıklı geometrik ortalama ve ağırlıklı harmonik ortalamadir. Ağırlıklı ortalama kavramı ile ilişkili teorik açıklamalar son kısımda ele alınacakdır.

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Güven aralığı, istatistik biliminde bir anakütle parametresi için bir çeşit aralık kestirimi olup bir çıkarımsal istatistik çözüm aracıdır. Bir anakütle parametre değerinin tek bir sayı ile kestirimi yapılacağına, bu parametre değerini kapsayabilecek iki sayıdan oluşan bir aralık bulunur. Böylece güven aralıkları bir kestirimin ne kadar güvenilir olduğunu gösterir.

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir: