İçeriğe atla

Menelaus teoremi

Menelaus teoremi, durum 1: DEF doğrsu ABC üçgeninin içinden geçer

İskenderiyeli Menelaus'a izafe edilen Menelaus teoremi düzlemsel geometride üçgenler üzerine bir teoremdir. , ve noktalarından oluşan üçgeninde , ve doğruları üzerinde bulunan ve üçgenin köşelerinden ayrık , ve noktalarının aynı doğru üzerinde olabilmesi ancak ve ancak:

denkleminin sağlanması ile mümkündür.

Bu denklemde, örneğin , eksi değer alabilen doğru parçalarını simgeler. Örnek olarak kesri sadece doğrusu kenarını kestiğinde artı değer alabilecek şekilde tanımlanmalıdır, çünkü sadece bu durumda iki doğru parçası aynı yönde ölçülmektedir ve bu durum diğer kesirler için de geçerlidir. Matematikçiler arasında bu teoremin yanlış olduğu üzerine süregelen bir şaka vardır (bunun yerine Ceva teoreminin kullanılması gerektiği söylenir).

İspatı

Menelaus teoremi, durum 2: DEF doğrusu ABC üçgeninin tamamen dışındadır.

Aşağıda teoremin pek çok ispatından bir tanesi verilmiştir. Öncelikle, denklemin sol tarafının işareti kontrol edilebilir. çizgisi üçgeninin kenarlarını çift sayıda kesmelidir - üçgenin içinden geçerse iki kere (üst resim) ya da üçgenin içinden geçmezse sıfır kere (alt resim) (Pasch aksiyomu)-. Dolayısıyla daima tek sayıda eksi değer olacağından sonuç eksi olacaktır.

Daha sonra büyüklük kontrol edilebilir. DEF doğrusunu , ve köşelerine birleştiren dikmeler oluşturalım. 'yi taban kabul edelim ve , ve dikmelerinin yüksekliklerini , ve olarak tanımlayalım. Benzer üçgenler kullanılarak denklemin sol tarafı aşağıdaki gibi sadeleşir:

Son olarak teoremin denkleminin doğruluğu durumunda , , noktalarının doğrusal olması gerektiği çelişki kullanılarak ispatlanabilir. kenarı üzerinde 'den farklı bir noktası olduğunu varsayalım ve , ve doğru parçalarının uzunluklarını , ve olarak tanımlayalım. noktasının da denklemi doğruladığını varsayalım. Bu durumda aşağıdaki kesirler eşit değerde olacaktır:

Bu da eşitliğine sadeleşir. Bu da doğrusu üzerinde yalnızca tek bir noktanın denklemi doğrulayabildiğini kanıtlar ve bu nokta da ve ile aynı doğru üzerinde bulunmalıdır. Simetriden dolayı aynı durum ve noktaları için de geçerlidir.

Batlamyus Almagest adlı eserinde Menelaus teoremini küresel trigonometri kuramının temeli olarak kullanmıştır.

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Pisagor teoremi</span> Öklid geometrisinde bir dik üçgenin üç kenarı arasındaki bağıntı

Pisagor teoremi veya Pisagor bağıntısı, Öklid geometrisinde üçgenin kenarları arasındaki temel ilişkiyi kuran ilk teoremlerden biridir. Teoreme gerçek hayattan örnek olarak telli çalgıları gösterilebilir; 'telin uzunluğu arttıkça titreşim artar' prensibine dayanır. Pisagor'un denklemi olarak da isimlendirilen bu teorem, a, b ve c kenarlarının arasındaki ilişkiyi şu şekilde açıklar:

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Elips</span>

Geometride, elips bir koninin bir düzlem tarafından kesilmesi ile elde edilen düzlemsel, ikinci dereceden, kapalı eğridir.

<span class="mw-page-title-main">Ampère kanunu</span>

Klasik elektromanyetizmada Ampère yasası kapalı bir eğri üzerinden integrali alınmış manyetik alanla o eğri üzerindeki elektrik akımı arasındaki ilişkiyi açıklayan yasadır. James Clerk Maxwell yasayı hidrodinamik olarak 1861 tarihli Fizikte kuvvet çizgileri üzerine makalesinde tekrar kanıtlar. Yasanın matematiksel ifadesi şu anda klasik elektromanyetizmayı oluşturan dört temel Maxwell denkleminden biridir.

<span class="mw-page-title-main">Ceva teoremi</span> Öklid düzlem geometrisinde bir üçgenin kenar doğru parçası çiftlerinin çarpımlarının oranının bire eşit olduğunu belirten teorem

Ceva Teoremi, herhangi bir ABC üçgeni verildiğinde, A, B ve C'den üçgenin zıt kenarlarına doğru olan doğru parçalarının üçgenin her iki kenarında oluşan doğru parçası çiftlerinin oranlarının çarpımı 1'e eşit olduğunda tek noktada kesiştiğini belirtir. Teorem adını İtalyan matematikçi Giovanni Ceva'dan alır.

<span class="mw-page-title-main">Açıortay</span>

Açıortay, geometride bir açıyı iki eşit açı şeklinde bölen yapıdır. Bir açıya teğet tüm çemberler çizilerek merkezleri birleştirilirse, o açının açıortayı elde edilir. Bu nedenle açıortaylardan açının kollarına indirilen dikmeler, o çemberlerden birinin merkezinden teğetlere inilen yarıçap dikmeleri olacağından, dikmeler birbirine eşit olur. Her iki kolda oluşan üçgenler de birbirine eşit olacağından, dikmelerin açıortay kollarını kestiği noktalar ile açının bulunduğu köşeye olan uzaklıklar eşit olur.

Matematikte, Green kuramı basit, kapalı bir C eğrisi etrafındaki çizgi integrali ile C eğrisinin sınırlandırdığı D düzlem bölgesi üzerindeki çift katlı integral arasındaki ilişkiyi verir. Teorem adını matematikçi George Green'den almıştır ve daha genel hâli olan Stokes teoreminin iki boyuttaki özel durumudur.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

Thales teoremi veya temel orantı teoremi olarak da bilinen kesişme teoremi, kesişen iki çizginin bir çift paralelle kesilmesi durumunda oluşturulan çeşitli çizgi parçalarının oranları hakkındaki temel geometride önemli bir teoremdir. Benzer üçgenlerdeki oranlarla ilgili teoreme eşdeğerdir. Geleneksel olarak Yunan matematikçi Thales'e atfedilir.

<span class="mw-page-title-main">Açıortay teoremi</span> Bir üçgeni bölen iki parçanın göreli uzunlukları hakkında

Geometride açıortay teoremi, bir üçgenin kenarının karşı açıyı ikiye bölen bir çizgiyle bölündüğü iki parçanın göreli uzunluklarıyla ilgilidir. Göreli uzunluklarını, üçgenin diğer iki kenarının göreli uzunluklarına eşitler.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

Carnot teoremi, bir üçgenin iç teğet çemberi ve çevrel çemberinin yarıçaplarının uzunlukları ile çevrel çemberin merkezinden üçgenin üç kenarına olan mesafelerin toplamı arasındaki ilişkiyi göstermektedir. Fransız matematikçi Lazare Nicolas Marguerite Carnot tarafından bulunmuştur.

<span class="mw-page-title-main">Euler dörtgen teoremi</span>

Leonhard Euler (1707–1783) adını taşıyan Euler dörtgen teoremi veya Euler'in dörtgenler yasası, dışbükey bir dörtgenin kenarları ile köşegenleri arasındaki ilişkiyi açıklar. Pisagor teoreminin genellemesi olarak görülebilecek Paralelkenar yasasının bir genellemesidir. Bu nedenle Pisagor teoreminin dörtgenler açısından yeniden ifade edilmesi bazen Euler-Pisagor teoremi olarak adlandırılır.

<span class="mw-page-title-main">Carnot teoremi (konikler)</span>

Adını Fransız matematikçi Lazare Carnot'dan alan Carnot'un teoremi, konik kesitler ve üçgenler arasındaki bir ilişkiyi tanımlar.

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

<span class="mw-page-title-main">Kesişen kirişler teoremi</span>

Kesişen kirişler teoremi veya sadece kiriş teoremi, bir çember içinde kesişen iki kiriş tarafından oluşturulan dört doğru parçasının ilişkisini tanımlayan temel geometrideki bir ifadedir. Her bir kirişteki doğru parçalarının uzunluklarının çarpımlarının eşit olduğunu belirtir. Öklid'in Unsurlarının 3. kitabının 35. önermesidir.

<span class="mw-page-title-main">Kesişen kesenler teoremi</span>

Kesişen kesen (sekant) teoremi veya sadece kesen (sekant) teoremi, kesişen iki sekant ve ilişkili çember tarafından oluşturulan doğru parçalarının ilişkisini açıklayan temel bir geometri teoremidir.

<span class="mw-page-title-main">Routh teoremi</span> Üçgenlerin alanları ile ilgili bir Öklid geometrisi teoremi

Geometride, Routh teoremi verilen bir üçgen ile üç cevianın ikili kesişimlerinden oluşan bir üçgen arasındaki alanların oranını belirler. Teorem, eğer üçgeninde , ve noktaları, , ve doğru parçaları üzerindeyse, o zaman , ve olmak üzere, , ve cevianları tarafından oluşturulan işaretli üçgenin alanı şöyle bulunur:

<span class="mw-page-title-main">Reuschle teoremi</span> Ortak bir noktada kesişen bir üçgenin cevianlarının bir özelliğini tanımlar

Temel geometride, Reuschle teoremi, ortak bir noktada kesişen bir üçgenin cevianlarının bir özelliğini tanımlar ve adını Alman matematikçi Karl Gustav Reuschle (1812-1875)'den alır. Ayrıca Fransız matematikçi Olry Terquem (1782-1862)'in adıyla 1842'de yayınlayan Terquem teoremi olarak da bilinir. Teorem, Euler doğrusu ve Feuerbach'ın dokuz nokta çemberi ile bağlantılı olarak benzer biçimde bulunan belirli köşe çaprazlarının kesişim özellikleriyle ilgili bir problemi ele almaktadır. Reuschle teoreminin ispatı, sekant teoreminin yanı sıra Ceva teoremi ve onun karşıt teoremine dayanmaktadır.

<span class="mw-page-title-main">Ters Pisagor teoremi</span> Öklid geometrisinde dik üçgenlerle ilgili bir teorem

Geometride, ters Pisagor teoremi aşağıdaki gibidir: