İçeriğe atla

Memmed Aliyev

Memmed Aliyev
Məmməd Rəhim oğlu Əliyev
DoğumMemmed Rahim oğlu Aliyev
13 Ekim 1940(1940-10-13)
Bakü, Azerbaycan
Ölüm04 Mart 1988 (47 yaşında)
Ottava, Kanada
Ölüm sebebiKalp krizi
MilliyetAzerbaycan
VatandaşlıkRusya
Mezun olduğu okul(lar)Bakü Devlet Üniversitesi, Moskova Devlet Üniversitesi
Kariyeri
DalıTeorik fizik
Çalıştığı kurumlarSpektroskopi

Memmed Rahim oğlu Aliyev (RusçaМамед Рагимович Алиев) — profesör, fizik-matematik bilimleri doktoru, moleküler fiziğin birçok sektöründe bilimsel katkı veren Azerbaycanlı Sovyet bilim insanı. Bilimsel başarıları arasında molekülde santrifüj genişleme sabitinin bulunma yöntemi, dinamik etkilerin doğru bir şekilde yorumlanması yer alır.

Hayatı

Memmed Aliyev, 13 Ekim 1940 tarihinde Bakü'de Müslüman bir ailede dünyaya geldi (babası Rahim Aliakbar oğlu Aliyev, annesi Govhar Hilal kızı, amcası kimya bilimleri doktoru, profesör Agarafi Agayev). 17 yaşındayken, Memmed de 128 sayılı ortaokuldan mezun oldu ve 1957 yılında Bakü Devlet Üniversitesi'ne kabul edildi. Burada fizik ve matematik okudu. 1961'de Moskova Devlet Üniversitesi'nde yüksek lisans eğitimine devam etti ve doktora yaptı. Daha sonra Rusya Bilimler Akademisi Spektroskopi Enstitüsünde hayatının sonuna kadar çalıştı. 1972'den 1986'ya kadar Çek Cumhuriyeti'nin Prag şehrinde düzenlenen All-Union Konferanslarında aktif rol aldı ve önemli bilimsel sonuçlarından dolayı Çek Bilimler Akademisi tarafından ödüllendirildi. Ayrıca Almanya, Fransa, İngiltere ve Kanada'daki meslektaşlarıyla birçok makale ve eseri yayınlandı.

Ölüm

Memmed Aliyev 4 Mart 1988'de kalp krizinden hayatını kaybetti. Mezarı Moskova'da bulunmakta.

Bilimsel çalışmalar ve makaleler

  • M. R. Aliev and J. K. G. Watson, J. Mol. Spectrosc. 75, 150 (1979).
  • M. R. Aliev and J. K. G. Watson, in Molecular Spectroscopy: Modern Research, edited by K. Narachari Rao (Academic, New York, 1985), Vol. III
  • D. Papousek and M. R. Aliev, Molecular Vibrational Rotational Spectra (Academia, Prague, 1982).
  • Aliev M, Papoušek D, Urban Š, Third-order theory of the line intensities in the allowed and forbidden vibrational-rotational bands of C<inf>3v</inf> molecules,Journal of Molecular Spectroscopy (1987)
  • Aliev M, Mikhailov V, Watson J, Higher order dipole moments for pure rotational transitions of methane-type molecules, Journal of Molecular Spectroscopy (1986)
  • Aliev M, Yamada K, Birss F, Effective Hamiltonian for polyatomic linear molecules,Journal of Molecular Spectroscopy (1985)
  • Aliev M, Mikhailov V, Forbidden rotational and vibrational-rotational transitions in H<inf>3</inf>+, Acta Physica Hungarica (1984)
  • Aliev M, Hougen J,The effects of vibration-rotation interaction on the quadrupole hyperfine structure of molecular rotational levels, Journal of Molecular Spectroscopy (1984)
  • Aliev M, Watson J,The rotational dependence of diagonal Coriolis coupling, Journal of Molecular Spectroscopy (1979)
  • Aliev M, Watson J,Upper and lower bounds of quartic centrifugal distortion constants, Journal of Molecular Spectroscopy (1979)
  • Aliev M, Watson J,Calculated sextic centrifugal distortion constants of polyatomic molecules, Journal of Molecular Spectroscopy (1976)
  • Aliev M, Forbidden rotational transitions in molecules,Soviet Physics – Uspekhi (1976)
  • Aliev M, Mikhaylov V,Forbidden rotational spectra of axially symmetric polar molecules, Journal of Molecular Spectroscopy (1974)
  • Aliev M, New relations between centrifugal distortion and coriolis coupling constants of polyatomic molecules, Journal of Molecular Structure (1974)
  • Aliev M, Sextic centrifugal distortion constants of axially symmetric molecules, Journal of Molecular Spectroscopy (1974)
  • Aliev M, Aleksandrov A, Transformation properties of centrifugal distortion constants of polyatomic molecules, Journal of Molecular Spectroscopy (1973)

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Botanik</span> bitki yaşamı bilimi

Botanik veya bitki bilim(ler)i, bitki biyolojisi, fitoloji, bitki yaşamı ile ilgili bir bilim dalı ve biyolojinin bir koludur. Bir botanikçi, bitki bilimcisi veya fitolog, bu alanda uzmanlaşmış bir bilim insanıdır. "Botanik" terimi; otlak, ot veya yem anlamına gelen Grekçe: βοτάνη (botanē) kelimesinden türetilmiştir. Geleneksel olarak, botanik, mantarları ve algleri de de içine alan bir bilim dalıdır. Günümüzde, botanikçiler, 391.000'i damarlı bitki türü ve yaklaşık 20.000'i kara yosunu olan yaklaşık 410.000 kara bitkisi türünü incelemektedir.

<span class="mw-page-title-main">Uranüs</span> güneş sisteminin 7. gezegeni

Uranüs, Güneş'e yakınlık bakımından yedinci gezegendir. Gazlı, camgöbeği renginde bir buz devidir. Gezegenin büyük bir kısmı, astronominin "buz" ya da uçucu maddeler olarak adlandırdığı maddenin süperkritik fazındaki su, amonyak ve metandan oluşur. Gezegenin atmosferi karmaşık katmanlı bir bulut yapısına sahiptir ve tüm Güneş Sistemi gezegenleri arasında 49 K ile en düşük minimum sıcaklığa sahiptir. Gezegenin 82,23°'lik belirgin bir eksenel eğimi ve 17 saat 14 dakikalık bir geriye dönüş periyodu vardır. Bu, Güneş etrafındaki 84 Dünya yıllık bir yörünge döneminde kutuplarının yaklaşık 42 yıl sürekli güneş ışığı aldığı ve ardından 42 yıl sürekli karanlık olduğu anlamına gelir.

<span class="mw-page-title-main">Elektron</span> Temel elektrik yüküne sahip atomaltı parçacık

Elektron, eksi bir temel elektrik yüküne sahip bir atomaltı parçacıktır. Lepton parçacık ailesinin ilk nesline aittir ve bileşenleri ya da bilinen bir alt yapıları olmadığından genellikle temel parçacıklar olarak düşünülürler. Kütleleri, protonların yaklaşık olarak 1/1836'sı kadardır. Kuantum mekaniği özellikleri arasında, indirgenmiş Planck sabiti (ħ) biriminde ifade edilen, yarım tam sayı değerinde içsel bir açısal momentum (spin) vardır. Fermiyon olmasından ötürü, Pauli dışarlama ilkesi gereğince iki elektron aynı kuantum durumunda bulunamaz. Temel parçacıkların tamamı gibi hem parçacık hem dalga özelliklerini gösterir ve bu sayede diğer parçacıklarla çarpışabilir ya da kırınabilirler.

<span class="mw-page-title-main">Jeolojik zaman cetveli</span> jeolojik yapıları zamanla ilişkilendiren kronolojik tarihleme sistemi

Jeolojik zaman cetveli, Dünya'nın jeolojik kayıtlarına dayanan bir zaman temsil şeklidir. Jeolojik zaman cetveli, kronostratigrafiyi ve jeokronolojiyi kullanan bir kronolojik tarihleme sistemidir. Özellikle yer bilimciler tarafından jeolojik tarihteki olayların zamanlamasını ve ilişkilerini tanımlamak için kullanılır. Zaman cetveli, kayaç katmanlarının incelenmesi, bu katmanların ilişkilerinin gözlemlenmesi, litoloji, paleomanyetik özellikler ve fosiller gibi özelliklerin tanımlanmasıyla geliştirilmiştir. Standartlaştırılmış uluslararası jeolojik zaman birimlerinin tanımlanması, birincil amacı jeolojik zaman bölümlerini gösteren Uluslararası Kronostratigrafik Çizelge'deki (ICC) global kronostratigrafik birimleri kesin olarak tanımlayan Uluslararası Jeolojik Bilimler Birliği'nin (IUGS) kurucu organı Uluslararası Stratigrafi Komisyonu'nun (ICS) sorumluluğundadır. Kronostratigrafik bölümler ise jeokronolojik birimleri tanımlamak için kullanılır.

<span class="mw-page-title-main">Spektroskopi</span>

Spektroskopi elektromanyetik radyasyon ile maddenin etkileşiminin radyasyonun dalga boyu veya frekansının bir fonksiyonu olarak ortaya çıkan elektromanyetik spektrumu (tayf) ölçen ve yorumlayan bir çalışma alanıdır. Başka bir deyişle, elektromanyetik spektrumun tüm bantlarında görünür ışıktan kaynaklı olarak meydana gelen bir kesin renk çalışmasıdır.

<span class="mw-page-title-main">Terpen</span>

Terpenler hidrokarbonların geniş ve çeşitli bir sınıfıdır, başlıca bitkiler özellikle iğne yapraklılar tarafından üretilmekle beraber bazı böcekler de osmeteriyumlarında terpenler salgılarlar. Reçinenin ve ondan elde edilen terebentinin ana bileşkesidirler. Terpen sözcüğü "terebentin" sözcüğünden türetilmiştir.

<span class="mw-page-title-main">Tinamidae</span>

Tinamidae, Tinamiformes alttakımına bağlı bir hayvan familyasıdır.

<span class="mw-page-title-main">CRL 618</span>

CRL 618, Arabacı takımyıldızında bulunan bir ön gezegenimsi bulutsudur. Kırmızı dev aşamasını geçmiş ve çekirdeğindeki nükleer füzyonu durmuş olan bir yıldız tarafından oluşturulmuştur. Bu yıldız, bulutsunun merkezinde gizlidir ve saniyede 200 km'ye varan hızda gaz ve toz çıkartmaktadır. Bulutsu, William E. Westbrook'un 1975 yılındaki ölümünden sonra adlandırılmıştır.

<span class="mw-page-title-main">AMPA reseptörü</span>

α-amino-3-hidroksi-5-metil-4-izoksazolpropiyonik asit (AMPA) reseptörü iyon kanalı özelliğine sahip bir iyonotropik glutamat reseptörüdür. AMPA reseptörü, kainat reseptörünün ve NMDA reseptörünün yanı sıra omurgalılardaki iyonotropik glutamat reseptörlerinin üç ana alt tipinden biridir. Kanal özgül olarak AMPA ile aktive edilebildiğinden dolayı bu ismi almıştır. İlk olarak NMDA ve NMDA-dışı reseptör şeklinde yapılan isimlendirmede NMDA-dışı kümesine dahil edilmiştir. Sonrasında kuiskualat molekülüyle uyarılabilmesi kuiskualat reseptörü ismini almasına neden olmuştur. Kuiskualatın özgül olmadığının anlaşılmasının ardından AMPA'nın keşfiyle son hali olan AMPA reseptörü adını almıştır. Memeli beynindeki hızlı uyarıcı sinaptik iletim büyük ölçüde, AMPA reseptörleri aracılığıyla sağlanmaktadır. Sinapslarda AMPA reseptörlerinin işlevi, gözenek oluşturan çekirdek alt birimleri ve yardımcı alt birimleri tarafından düzenlenmektedir. Her yardımcı alt birim, trafiğin düzenlenmesinden iyon kanalı geçit kinetiğinin şekillendirilmesine kadar değişen etkiler yapabilmektedir. AMPA reseptörleri tetramerik yapıya sahiptir. Nöronal plastisitenin ifadesi için kritik öneme sahip olduğu bilinmektedir. AMPA reseptörlerinin kinetik ve iletkenlik özellikleri, üretimleri sırasında ortaya koyulmaktadır. Transkripsiyon sonrası RNA düzenleme, ekleme varyasyonu ile translasyon sonrası modifikasyon ve alt birim kompozisyonu ile düzenlenmektedir. AMPA reseptörünün birleştirilmesi ve trafiklenmesi geniş bir yardımcı alt birim repertuvarına bağlıdır.

Per-Olov Löwdin İsveçli fizikçi, Uppsala Üniversitesi'nde profesör, paralel olarak 1993'e kadar Florida Üniversitesi'nde profesör. Ivar Waller adı altındaki eski lisans öğrencisi, Löwdin 1950 yılında moleküler orbital hesaplamalar için simetrik ortogonalizasyon düzenlemeleri yapmıştır. Bu şema Yarı-ampirik teorileri kullanılan sıfır diferansiyel örtüşme (ZDO) yaklaşım temelidir. Löwdin ayrıca kolay kuantum mekaniğinin çeşitli teoremlerin türetmelerini matrisleri için sembolleri kullanarak oluşturmuştur. ROHF,UHF ve RES-GVB teorilerinde kullanılan meşhur “Löwdin’s pairing theorem” onun değildir. Kendisine göre George G. Hall ve King Löwdin 'in resmi olmayan önerisinden sonra resmi bir sunum yapmışlardır. 1963 ve 1971 yılları arasında yayınlanmış pertürbasyon teorisi üzerindeki 14 sayfa dizi kuantum kimyası için en iyi bölümleme tekniği olarak görülmüştür. Löwdin ayrıca 1958 yılında Uppsala'da kuantum kimyası yaz okulundan başlayarak çok etkili ve aktif bir öğretmendir. 1958 ve 1960'ta Uppsala Üniversitesi kuantum kimyası grubuna kardeş olarak Florida Üniversitesi'nde kuantum teorisi projesine başlamıştır. Uluslararası Kış Enstitüleri yüzlerce Latin Amerikanların seksenler ve doksanlar boyunca katılımlarını sağladı. 1960 yılında Kış Enstitüsünün içindeki birleşimde Sanibel sempozyumunu kurdu. 1960'tan sonra her yıl düzenlenmiştir. Löwdin 1969'da İsveç Kraliyet Bilimler Akademisi üyesi olarak seçilmiş ve 1972'den 1984'e kadar Fizik Nobel Ödülü komitesinde bulunmuştur. Kuantum kimyası uluslararası gazetesi ve kuantum kimyası gelişmeler serisi kurucudur. Uluslararası Kuantum Moleküler Bilimler Akademisi'nin de vakıf üyesidir.

<span class="mw-page-title-main">Franck-Condon ilkesi</span>

Franck–Condon ilkesi, spektroskopide ve kuantum kimyasında bir kuraldır ve titreşimsel geçişlerin yoğunluğu olarak açıklanır. Titreşimsel geçişler uygun enerjideki fotonların emme ve emisyonundan dolayı elektronik ve titreşimsel enerji seviyelerinde eş zamanlı değişiklik olur. Prensip belirtiyor ki, elektronik geçiş sırasında eğer bu iki titreşimsel dalga fonksiyonları büyük ölçüde aşar ise bir titreşimsel enerji seviyesinden diğerine değişiklik olur.

<span class="mw-page-title-main">John C. Slater</span> Amerikalı fizikçi (1900 – 1976)

John C. Slater, atomların, moleküllerin ve cisimlerin elektronik yapısı teorisine büyük katkılar yapmış önemli bir Amerikalı fizikçidir. Bu çalışma kimyanın yanı sıra fiziğin birçok dalında devam eden bir önem arz eder. Slater ayrıca mikrodalga elektroniğine de önemli katkılar yapmıştır. 1920'de Rochester Üniversitesi Fen Fakültesinden mezun olmuş, 1923'te Harvard’da fizik üzerine doktora yapmıştır; ardından Cambridge ve Copenhagen üniversitelerinde doktora sonrası çalışma yapmıştır. ABD'ye dönüşü ile birlikte Harvard Fizik Bölümüne katılmıştır.

<span class="mw-page-title-main">Azot triklorür</span>

Azot triklorür, trikloramin olarak da bilinen formülü NCl3 olan kimyasal bileşik. Sarı, yağımsı, keskin kokulu bir sıvıdır. En sık amonyak türevleri ve klor arasındaki kimyasal reaksiyon sonrası oluşmaktadır, yüzme havuzlarındaki oluşumu buna bir örnektir.

<span class="mw-page-title-main">Azulen</span> kimyasal bileşik

Azulen organik bir bileşiktir ve Naftalinin bir izomeridir. Naftalinin renksiz olmasına karşın, azulen koyu mavi bir renge sahiptir. İki terpenoid, vetivazulen (4,6-dimetil-2-izopropilazulen) ve guaiazulen (1,4-dimetil-7-izopropilazulen), bu özelliklere sahip azulen iskeletli maddeler, doğal olarak mantar pigmentlerinde, Peygamber ağacı yağında ve bazı deniz omugasızlarında bulunabilir.

Bu liste, nükleik asit simülasyonları için kullanılan bilgisayar programlarının bir listesidir.

<span class="mw-page-title-main">Nitro bileşiği</span>

Nitro bileşikleri, bir veya daha fazla nitro fonksiyonel grubu (−NO2) içeren organik bileşiklerdir. Nitro grubu, dünya çapında kullanılan en yaygın eksplosoforlardan (bileşiği patlayıcı madde yapan fonksiyonel grup) biridir. Nitro grubuda güçlü bir elektron çeken gruptur. Bu özellik nedeniyle, nitro grubuna alfa (bitişik) olan C-H bağları asidik olabilir. Aynı nedenden dolayı, aromatik bileşiklerde nitro grubunun varlığı elektrofilik aromatik sübstitüsyonu yavaşlatsa da nükleofilik aromatik sübstitüsyonu kolaylaştırır. Nitro grupları, doğada nadiren bulunur ve nitrik asit ile başlayan nitrolama reaksiyonları tarafından neredeyse her zaman üretilir.

Oligonükleotitler, genetik test, araştırma ve adli tıpta geniş bir uygulama alanına sahip olan kısa DNA veya RNA molekülleri, oligomerleridir. Laboratuvarda katı faz kimyasal sentezi ile yaygın olarak yapılan bu küçük nükleik asit bitleri, herhangi bir kullanıcı tanımlı diziye sahip tek sarmallı moleküller olarak üretilebilir ve bu nedenle yapay gen sentezi polimeraz zincir reaksiyonu (PCR) DNA dizileme moleküler klonlama ve moleküler problar için hayati öneme sahiptir. Doğada oligonükleotitler genellikle gen ekspresyonunun düzenlenmesinde işlev gören küçük RNA molekülleri olarak bulunur veya daha büyük nükleik asit moleküllerinin parçalanmasından türetilen bozunma ara maddeleri olarak bulunur.

Kuantum biyolojisi, kuantum mekaniğinin ve teorik kimyanın biyolojik nesnelere ve problemlere uygulamalarının incelenmesidir. Birçok biyolojik süreç, enerjinin kimyasal dönüşümler için kullanılabilen biçimlere dönüştürülmesini içerir ve doğası gereği kuantum mekaniktir. Bu tür süreçler, kimyasal reaksiyonları, ışık emilimini, uyarılmış elektronik durumların oluşumunu, uyarma enerjisinin aktarımını ve fotosentezi, koku almayı ve hücresel solunum gibi kimyasal süreçlerde elektron ve protonların aktarımını içerir.

Biyosentez, substratların canlı organizmalarda daha karmaşık ürünlere dönüştürüldüğü çok aşamalı, enzim katalizli bir süreçtir. Biyosentezde basit bileşikler modifiye edilir, diğer bileşiklere dönüştürülür veya makromoleküller oluşturmak üzere birleştirilir. Bu süreç genellikle metabolik yollardan oluşur. Bu biyosentetik yollardan bazıları tek bir hücresel organel içinde yer alırken diğerleri birden fazla hücresel organel içinde yer alan enzimleri içerir. Bu biyosentetik yolların örnekleri arasında çift katlı lipit katmanının bileşenlerinin ve nükleotidlerin üretimi yer alır. Biyosentez genellikle anabolizma ile eş anlamlıdır ve bazı durumlarda birbirinin yerine kullanılır.

<span class="mw-page-title-main">Aminoasil-tRNA</span>

Aminoasil-tRNA, aynı kökenli amino asidinin kimyasal olarak bağlı (yüklü) olduğu tRNA'dır. aa-tRNA, belirli uzama faktörleriyle birlikte, translasyon sırasında üretilen polipeptit zincirine dahil edilmek üzere amino asidi ribozoma iletir.