İçeriğe atla

Mekanik verimlilik

Mekanik verimlilik, bir makineye verilen enerji ile makineden elde edilen kuvvet veya hareketin verimliliğinin ölçümüdür. Verimlilik, ölçülen performansın ideal performansa oranıdır ve matematiksel olarak şöyle ifade edilir:

Aktarım sistemi (şanzıman) veya mekanizma, güç üretmez. Bunların çıkış gücü giriş gücüne eşit olduğunda ideal performansı yakalar. İdeal performansın anlamı, hiçbir kaybın olmamasıdır. Gerçek cihazlarda sürtünme kuvveti, şekil değiştirme ve aşınmaden dolayı güç kaybı olur.

İdeal bir aktarım veya mekanizmanın verimi %100'dür. Çünkü hiçbir kayıp yoktur. Gerçekte hiçbir cihazın verimi %100 değildir. Güç aslında kaybolmaz, yalnızca ısı olarak ortama yayılır.

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Makine</span> herhangi bir enerji türünü başka bir enerjiye dönüştürmek, belli bir güçten yararlanarak bir işi yapmak veya etki oluşturmak için dişliler, yataklar ve miller gibi çeşitli makine elemanlarından oluşan düzenekler bütünü

Makine, bir iş yapmak için kuvvet uygulamak ve hareketi kontrol etmek için güç kullanan fiziksel bir sistemdir. Terim genellikle motor kullanan yapay cihazlara veya moleküler makineler gibi doğal biyolojik makromoleküllere de uygulanır.

<span class="mw-page-title-main">Mekanizma</span> makinenin dinamik analizinde uzuvları arasında hareket iletimi ya da kuvvet iletimi

Mühendislik'te mekanizma, girdi kuvvetlerini ve hareketi istenen çıktı kuvveti ve hareket grubuna dönüştüren cihaz'dır. Mekanizmalar genellikle aşağıdakileri içerebilen hareketli bileşenlerden oluşur:

<span class="mw-page-title-main">Beygir gücü</span> İmparatorluk birim sistemindeki güç birimi (745.69987 W)

Beygir gücü, genellikle otomobil ve elektrik motorlarının güçlerinin belirlenmesi için kullanılan güç birimi. Birimin kısaltması hp'tir. Terim, buhar makinelerinin üretilmeye başlandığı yıllarda, bu makinelerin güçlerinin olası alıcılar tarafından kolayca anlaşılabilmesi için James Watt tarafından kullanılmıştır.

<span class="mw-page-title-main">Stirling motoru</span>

Stirling motoru, sıcak hava motoru olarak da bilinir. Dıştan yanmalı motorlu bir ısı makinesi tipidir. Isı değişimi prosesi, ısının mekanik harekete dönüşümünün ideal verime yakın olmasına izin verir.

<span class="mw-page-title-main">Ericsson çevrimi</span>

Ericsson çevrimi, ismini John Ericsson’dan almış termodinamik bir çevrimdir. Gerçekte 2 çevrim bulmuş ve ısı makineleri üzerinde uygulamalarını göstermiştir. İlk çevrim Brayton çevrimi olarak bildiğimiz çevrimle hemen hemen aynıdır. İkinci çevrim Carnot çevrimine eşit verim ortaya koyar. Her ikisi de sık sık dıştan yanma kabiliyetleri açısından Stirling motoru ile karşılaştırılır ve ikinci çevrim aynı verimliliktedir.

<span class="mw-page-title-main">Turbofan</span> jet motor türü

Turbofan, itişi egzoz gazıyla beraber, ön kısımdaki geniş fanla da sağlanan güvenilir ve bakımı kolay jet motoru tipidir. Ön kısmı büyük, arka kısmı koni şeklinde ve daha küçüktür. Genelde yolcu uçaklarında kullanılır.

<span class="mw-page-title-main">Elektrik üreteci</span> Mekanik enerjiyi elektrik enerjisine dönüştüren aygıt

Elektrik üretiminde jeneratör, harekete dayalı gücü veya yakıta dayalı gücü harici bir devrede kullanılmak üzere elektrik gücüne dönüştüren bir cihazdır. Mekanik enerji kaynakları arasında buhar türbinleri, gaz türbinleri, su türbinleri, içten yanmalı motorlar, rüzgar türbinleri ve hatta el krankları bulunur. İlk elektromanyetik jeneratör olan Faraday diski, 1831 yılında İngiliz bilim adamı Michael Faraday tarafından icat edildi. Jeneratörler elektrik şebekeleri için neredeyse tüm gücü sağlar.

<span class="mw-page-title-main">Mazot</span>

Mazot veya motorin, dizel motorlarda kullanılan, ham petrolün damıtma ürünlerinden biridir.

<span class="mw-page-title-main">Kojenerasyon</span>

Kojenerasyon, tercihen ısı tüketimi olan yerlerde kullanılan ve aynı zamanda bölge ısıtma ağını yararlı ısıyla besleyebilen elektrik enerjisi ve ısı üretebilen modüler yapılı bir sistemdir. Bu sistem kombine ısı ve güç sistemi ilkesine dayanmaktadır.

<span class="mw-page-title-main">Otomasyon</span>

Otomasyon, esasen karar kriterlerini, alt süreç ilişkilerini ve ilgili eylemleri önceden belirleyerek ve bu önceden belirlemeleri makinelerde somutlaştırarak süreçlere insan müdahalesini azaltan geniş bir teknoloji yelpazesini tanımlar.

Verimlilik, şu anlamlara gelebilir:

Özgül itici kuvvet roket ve jet motorlarının verim oranını tanımlamak için kullanılan bir yöntemdir. Kullanılan itici yakıt miktarı ile ilgili olarak itici kuvvetin türevini belirtir. Başka bir deyişle, itme kuvveti birim zamanda kullanılan itici yakıt miktarına bölünür. İtici yakıt "miktarı" kütlece verilirse, bu durumda özgül itici kuvvet hız birimine sahip olur. İtici yakıt miktarı ağırlıkça verilirse, o zaman da özgül itici kuvvet zaman birimi ile ifade edilir. Özgül itici kuvvetin iki sürümü arasındaki dönüşüm sabiti g dir. Özgül itici kuvvet ne kadar yüksekse, belirli bir itme kuvveti için gerekli itici yakıt akış hızı o kadar az olur ve bu durumda Tsiolkovsky roket denkleminde bahsi geçen delta-v için roketin daha az itici yakıta ihtiyacı olur.

<span class="mw-page-title-main">Otomotiv termoelektrik üreteci</span>

Otomotiv termoelektrik üreteci (OTÜ), içten yanmalı motordaki atık ısıyı Seebeck etkisini kullanarak elektrik enerjisine dönüştüren bir cihazdır. Normal bir OTÜ, dört ana bileşenden oluşur: Sıcak taraflı ısı eşanjörü, soğuk taraflı ısı eşanjörü, termoelektrik malzeme, sıkıştırma sistemi. OTÜ'ler sıcak taraftaki ısı eşanjörüne bağlı olarak iki kategoriye ayrılabilir: Egzoz tabanlı ve soğutucu tabanlı. Egzoz tabanlı OTÜ'ler, atık ısıyı içten yanmalı motorun egzozlarından elektrik enerjisine dönüştürür. Alternatif olarak soğutucu tabanlı OTÜ'ler antifrizin atık ısısını elektrik üretmek için kullanır.

<span class="mw-page-title-main">Isı motoru</span>

Termodinamikte, ısı enerjisini mekanik enerjiye çeviren sistemlere Isı Motoru denir. Bu çeviriyi maddeyi çok yüksek sıcaklıklara getirip daha sonra düşük sıcaklıklara getirerek yapar. Isınan madde jeneratörün devinimsel kısmında "iş" yaparak enerjisini jeneratöre aktarır ve soğur. Bu işlem esnasında bir miktar termal enerji "iş"e dönüşür. Dönüşüm miktarı kullanılan maddeye bağlıdır.

<span class="mw-page-title-main">Amplifikatör</span>

Amplifikatör veya yükselteç, elektronik sinyalleri artırmak için kullanılan elektronik cihazlardır. Amplifikatörler bu işlemi bir güç sağlayacısından alıp bu çıkış sinyallerinin şeklini eşleştirerek yaparlar. Yani, bir amplifikatör güç sağlayıcısından aldığı sinyalleri düzenler.

<span class="mw-page-title-main">Soğutma grubu</span> chiller

Soğutucu, buhar sıkıştırmalı, adsorpsiyonlu soğutma veya absorpsiyonlu soğutma çevrimleriyle sıvı soğutucudan ısıyı alan makinedir. Bu sıvı daha sonra ekipmanı soğutmak için ısı değiştiriciden veya başka proses akışından dolaştırılabilir. Soğutma, ortama verilmesi gereken veya yüksek verimlilik için ısıtma amacıyla geri kazanılması gereken atık ısı oluşturur.

<span class="mw-page-title-main">Motor freni</span> fren türü

Motor freni, sürtünme freni veya manyetik fren gibi ek harici frenleme mekanizmaları kullanmak yerine, bir motorlu taşıtın motorunun içindeki yavaşlatma kuvvetleri kullanıldığında meydana gelir.

<span class="mw-page-title-main">Hibrit elektrikli araç</span>

Hibrid elektrikli araç (HEV), hibrit araç türüdür. Geleneksel bir içten yanmalı motor (ICE) sistemini bir elektrikli tahrik sistemi ile birleştirir. Birçok HEV, motoru rölantide kapatarak ve gerektiğinde yeniden başlatarak rölanti emisyonlarını azaltır; bu bir start-stop sistemi olarak bilinir. Elektrikli güç aktarım mekanizmasının varlığı, ya geleneksel bir araçtan daha iyi yakıt ekonomisi ya da daha iyi performans elde etmeyi amaçlıyor. Çeşitli HEV türleri vardır ve her birinin elektrikli araç (EV) olarak işlev görme derecesi de değişir. Bazı HEV çeşitleri, bir elektrik üretecini döndürmek için içten yanmalı bir motor kullanır. Bu, aracın pillerini şarj eder veya doğrudan elektrikli tahrik motorlarına güç sağlar; bu kombinasyon bir motor-jeneratör olarak bilinir.

<span class="mw-page-title-main">Enerji verimliliği</span> enerji verimliliği kısıtlı enerji kaynaklarının verimli bir şekilde değerlendirilmesi

Enerji verimliliği ürün ve hizmetlerin sağlanması için gereken enerji miktarını azaltma hedefidir. Örneğin, bir evin yalıtılması, bir binanın rahat bir sıcaklık elde etmek ve korumak için daha az ısıtma ve soğutma enerjisi kullanmasına izin verir. LED aydınlatma, floresan aydınlatma veya doğal ışık için tavan pencerelerinin kullanılması, geleneksel akkor ampullerin kullanımına kıyasla aynı aydınlatma seviyesine ulaşmak için gereken enerji miktarını azaltır. Enerji verimliliğindeki iyileşmeler genellikle daha verimli bir teknoloji veya üretim süreci benimsenerek veya enerji kayıplarını azaltmak için yaygın olarak kabul edilen yöntemlerin uygulanmasıyla elde edilir.

<span class="mw-page-title-main">Carnot ısı motoru</span>

Carnot ısı motoru, Carnot çevriminde çalışan bir ısı motorudur. Bu ısı motorunun temel hâli 1824'te Nicolas Léonard Sadi Carnot tarafından geliştirildi. Carnot motor modeli, 1834'te Benoît Paul Émile Clapeyron tarafından grafiksel olarak genişletildi ve 1857'de Rudolf Clausius tarafından matematiksel anlamda araştırıldı. Bu çalışmalar, temel bir termodinamik kavram olan entropinin keşfedilmesini sağladı. Carnot motoru, teorik olarak mümkün olan en verimli motordur. Verimlilik, yalnızca motorun arasında çalıştığı sıcak ve soğuk ısı rezervuarlarının mutlak sıcaklıklarına bağlıdır.