İçeriğe atla

Medyan testi

Medyan testi, bir örneklem kümesinin belirli bir medyan değerine sahip olan bir anakütleden gelip gelmediğinin araştırılmasında kullanılan çift taraflı bir testtir. istatistik biliminde çıkarımsal istatistik alanında bir parametrik olmayan istatistik aletidir ve Pearson'un ki-kare testinın özel bir halidir. Mood'un-medyan-testi veya Westenberg-Mood-medyan-testi veya Brown-Mood-medyan-testi olarak da anılır.

Hipotez testi

Bu, "parametrik olmayan test"de sıfır hipotez H0 iki rastgele örneklem için bulunan iki örneklem medyanının tek özdeş medyanı olan iki ayrı istatistiksel yığından veya daha kapsamlı bir çıkartım olarak, tek bir medyanı olan tek bir istatistiksel yığından ortaya çıktığı önerisidir. Karşıt hipotez H1 ise iki örneklemin birbirine özdeş medyanı olan yani tek bir anakütleden gelmediğidir. Dikkat edilirse H1 bir menfi sonuç verir ve veri iki örneklemin ne türlü iki anakütleden geldiğini açıklamaz. Daha genel bir lisanla ve daha matematiksel olmayan bir şekilde ifadeyle, eğer H0 kabul edilirse, iki örneklemin tek bir anakütleden gelmiş olduğu, eğer H0 reddedilirse tek bir anakütleden gelmiş olmadığı sonucu çıkartılır.

Test hesapları

Teste biri V1 n1 diğeri V2 n2 büyüklüklerde iki basit rastgele örneklem verileri elde etmekle başlanır. Önce bu iki grup veri birleştirilip (N=n1+n2 büyüklüğünde bir birleşik veri serisi elde edilip ve bu birleşik verilerin birleşik medyanı bulunur. Sonra iki örneklem verisi V1 ve V2 ayrı ayrı ele alınır. Her bir örneklemde, her bir veri değeri birleşik medyan değeri ile karşılaştırılır ve veri değerine ya birleşik medyan altında olan yani (-) işareti verilerek ya da birleşik medyan üstünde olan yani (+) işareti verilerek, örneklem verileri iki kısma (- ve + işaretliler) ayrılır. Eğer herhangi bir örneklem verisi birleşik medyan ile ayni değerde ise, Siegel ve Castellan (1988) eğer n1, n1 ve N büyükse bunların analizden elimine edilmesini tavsiye ederler. Böylelikle 4 değer elde edilir:

  1. A: V1 örneklem verilerinden birleşik medyan değerinin üstünde olan + işaretli veri sayısı;
  2. B: V2 örneklem verilerinden birleşik medyan değerinin üstünde olan + işaretli veri sayısı;
  3. C: V1 orneklem verilerinden birleşik medyan değerinin altında olan - işaretli veri sayisi;
  4. D: V2 örneklem verilerinden birleşik medyan değerinin altında olan - işaretli veri sayısı.

Boylece hesaplarla 2x2 (yani iki sıralı ve iki sütunlu) şu "kontanjans tablosu" ortaya çıkartılır:

1. Örneklem V1 2. Örneklem V2 Toplam
(+) işaretli veri sayısı A B A + B
(-) işaretli veri sayısı C D C + D
Toplam n1n2N=n1+n2

Test istatistikleri ve çıkartım

Eger Orneklem V1 ve Orneklem V2 ayni ozdes medyan değeri anakutleden gelmislerse; her bir orneklem için bilesik yigin medyaninin altinda olan gozlem sayisi bilesik medyanin ustunde bulunan gozlem sayisi ile ayni olacaktir. Bu demektir ki bu orneklemler tek bir anakutleden gelirlerse

  • A = (½)n1 ve
  • B = (½)n1

olacaktir. C ise A ile ayni degerde ve D ise B ile ayni degerde olacaktir. Birazdan gorulecegi gibi bu sınama icin kullanılacak "Fisher kesin sinamasi" veya "ki-kare sinamasi" olacaktir ve A, B, C ve D "gozlenen degerleri", bu degerler ise bu sinama için gereken "beklenen deger"leri verecektir.

Medyan testinde sifir hipotez iki orneklemin ayni medyani olan anakutleden geldigi sinanmaktadir; yani bunu matematiksel ifade edersek
H0: A = (½) n1 ve B = (½) n2
olarak yazilir. Karsit hipotez ise bunlarin dogru olmayacagidir; yani matematik ifade ile
H1: A ‡ (½) n1 ve B ‡ (½) n2

Mood (1950 say.394-395) makalesinde ispat edilmiştir ki eğer H0 A = (½) n1 ve B = (½) n2 ise A ve B için ornekleme olasılık dağılımı şu şekilde ifade edilen bir hipergeometrik dağılım gosteririr:

Bu nedenle, eger toplam orneklem buyuklugu (n1 + n2) gore degisik turlu sinama kullanilamasi gerekir:

  • Eger toplam orneklem buyuklugu 20'den daha kucukse, yani

(n1 + n2) <= 20
veya dort hucrenin herhangi birinde "beklenen deger" 5in altinda ise H0 sifir hipotezini test etmek icin Fisher kesin sinamasi kullanilabilir.

  • Eger toplam orneklem buyuklugu 20 ile 40 arasinda ise ve dort hucrenin hicbirinde "beklenen deger" 5'in altinda degilse

20 <= (n1 + n2) <= 40 ve her dort hucre de beklenen degerler 5'in ustundeyse

  • Eger toplam orneklem buyuklugu 40'in ustundeyse yani

(n1 + n2) >= 40
o halde, serbestlik derecesi 1'e esit olan bir Pearson'un χ2s.d=1 sinamasi kullanilabilir.

Değerlendirme

Bu testin, örneklem veri büyüklüklerinin (n1 ve n1) orta ve büyük hacimde olması halinde etkinliği düşüktür, yani istatistiksel gücü azdır. Küçük hacimli örneklemeler için kullanılması hiç tavsiye edilmez. Bu nedenle araştırmalarda bu türlü hipotezli test için Wilcoxon-Mann-Whitney U testinin kullanılması tercih edilmelidir. Bu iki test türü arasındaki fark "medyan testi"nin her verinin birleşik medyana nispeten verinin pozisyonunu ele alması; buna karşıt "Wilcoxon-Mann-Whitney U-testi"nin her gözlemin veri sıralaması içindeki yerini ele almasıdır. Bunun için Wilcoxon-Mann-Whitney U sınanmasının gücü daha büyüktür.

Fakat, eğer örneklem verilerinin bir veya birkaçı çok aykırı (outlier) değer göstermekte ise Siegel ve Castellan (1988, say. 124) medyan testini kullanmaktan başka çare olmadığını bildirirler.

Dış bağlantılar

  • İngilizce Wikipedia Median test maddesi 6 Aralık 2010 tarihinde Wayback Machine sitesinde arşivlendi. (İngilizce) (Erişme: 5.2.2010).
  • Mood, Alexander McFarlane (1950) Introduction to the Theory of Statistics. New York:McGraw-Hill Book Co., say,394−398 (İngilizce)
  • Siegel, Sidney ve Castellan, N.John (1988), Nonparametric Statistics for the Behavioral Sciences, New York:McGraw-Hill, ISBN 978-0-07-057357-4 (İngilizce)
  • The median test for independent samples. In: Sheskin, David (2007) Handbook of Parametric and Nonparametric Statistical Procedures. Boca Racon:CRC Press, Boca Raton ISBN 1-58488-814-8, S. 645/646 (İngilizce)
  • J.D. Gibbons: Median Test, Brown–Mood. In: Encyclopedia of Statistical Sciences. John Wiley & Sons, 2006, (İngilizce)
  • Friedlin, Boris ve Joseph L. Gastwirth (2005) Should the Median Test Be Retired From General Use? In: The American Statistician. American Statistical Association Cilt 54 say.161−16, (İngilizce)

İlgili Araştırma Makaleleri

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

Hipotez testi, bir hipotezin doğruluğunun istatistiksel bir güvenilirlik aralığında saptanması için kullanılan yöntem.

Örnekleme istatistikte belirli bir yığından alınan kümeyi ifade eder. Örneğin; Türkiye'deki tüm üniversite sayıları bir yığın iken Ankara'daki üniversite sayısı bu yığından alınmış bir örnektir.

Varyans Analizi istatistik bilim dalında, grup ortalamaları ve bunlara bağlı olan işlemleri analiz etmek için kullanılan bir istatistiksel modeller koleksiyonudur. Varyans Analizi kullanılmaktayken belirlenmiş bir değişkenin gözlemlenen varyansı farklı değişim kaynaklarına dayandırılabilen varyans bileşenine ayrılır. En basit şekliyle varyans analizi birkaç grubun ortalamalarının birbirine eşit mi eşit değil mi olduğunu sınamak için bir çıkarımsal istatistik sınaması olur ve bu sınama iki-grup için yapılan t-test sınamasını çoklu-gruplar için genelleştirir. Eğer, çoklu değişkenli analiz için birbiri arkasından çoklu iki-örneklemli-t-sınaması yapmak istenirse bunun I. tip hata yapma olasılığını artırma sonucu doğurduğu aşikardır. Bu nedenle, üç veya daha fazla sayıda ortalamaların ististiksel anlamlığının sınama ile karşılaştırılması için Varyans Analizleri daha faydalı olacağı gerçeği ortaya çıkmaktadır.

<span class="mw-page-title-main">Standart sapma</span> İstatistikte bir varyasyon ölçüsü

Standart sapma, Olasılık kuramı ve istatistik bilim dallarında, bir anakütle, bir örneklem, bir olasılık dağılımı veya bir rassal değişken, veri değerlerinin yayılımının özetlenmesi için kullanılan bir ölçüdür. Matematik notasyonunda genel olarak, bir anakütle veya bir rassal değişken veya bir olasılık dağılımı için standart sapma σ ile ifade edilir; örneklem verileri için standart sapma için ise s veya s'

İstatistik bilimi için mod bir veri kümesi içinde en sık görülen değerdir. Tepedeğer olarak da adlandırılır. Bazı kullanım alanlarında, özellikle eğitim alanında, örnek veriler çok kere puan olarak anılmakta ve örnek mod değerine ise mod puanı adı verilmektedir.

İstatistiksel terimler, kavramlar ve konular listesi matematik biliminin çok önemli bir alt-bölümü olan istatistik biliminde içeriğinde bulunan konuların çok ayrıntılı olarak sınıflandırılması ile ortaya çıkarılmıştır. Milletlerarası İstatistik Enstitüsü bir enternasyonal bilim kurumu olarak istatistik bilimi konu ve terimlerini bir araya toplayıp 28 bilim dilinde karşılıklı olarak yayınlamıştır. Bu uğraşın sonucunun milletlerarası bilim camiasının büyük başarılarından biri olduğu kabul edilmektedir. Ortaya çıkartılan, istatistik bilimi içinde kullanılan ve bu bilime ait özel kavramların ve terimlerin listesi, tam kapsamlı olma hedeflidir ve böylelikle istatistik bilimi için bir Türkçe yol haritası yapılmış olmaktadır.

Değerleyici güvenebilirliği, değerleyiciler arasında uyuşma veya konkordans değerleyiciler arasında bulunan uyuşma derecesini ölçmek amacı ile kullanılan istatistiksel yöntemleri kapsar.

İstatistik bilim dalında Kruskal-Wallis sıralamalı tek yönlü varyans analizi, bağımsız gruplar arası anakütle medyanlarının eşitliğini sınamak amacı ile kullanılan bir parametrik olmayan istatistik sınamasıdır. Adı bu yöntemi ilk defa ortaya koyan William Kruskal ve W. Allen Wallis atıfla konmuştur. Matematiksel olarak ayrı olmakla beraber, tek yönlü varyans analizinin bir değişik şekli olarak görülebilir. Diğer bir görüşe göre Mann-Whitney U sınamasının 3 veya daha çoklu gruplara genişletilmesidir.

İstatistik bilim dalı içinde Friedman sıralamalı iki yönlü varyans analizi sonradan çok tanınmış bir iktisatçı olan Amerikan Milton Friedman tarafından ortaya atılan bir parametrik olmayan istatistik sınamasıdır.

Mann-Whitney U testi niceliksel ölçekli gözlemleri verilen iki örneklemin aynı dağılımdan gelip gelmediğini incelemek kullanılan bir parametrik olmayan istatistik testdir. Aynı zamanda Wilcoxon sıralama toplamı testi veya Wilcoxon-Mann-Whitney testi) olarak da bilinmektedir. Bu testi ilk defa eşit hacimli iki örneklem verileri için Wilcoxon (1945) ortaya atmıştır. Sonradan, Mann and Whitney (1947) tarafından değişik büyüklükte iki örneklem problemleri analizleri için uygulanıp geliştirilmiştir.

Betimsel istatistik içinde, bir yüzdebirlik sıralanmış bir veri serisini yüz eşit parçaya bölen ve böylece her bir bölünen parçanın anakütle veya örneklem verilerinin 1/100'ini kapsadığı, 99 tane özetleme değeridir. Betimsel istatistikte yüzdebirlikler çok popüler olarak kullanılır. Yüzdebirliklerin diğer bir popüler kullanım alanı, özellikle ABD'de, eğitimciler ve psikologlar tarafından uygulanan testlerin sonuçlarının normal eğri kestirimi uygulanarak yüzdeliklerin bulunması suretiyle verilmesidir.

<span class="mw-page-title-main">Geometrik medyan</span>

Geometrik medyan bir Öklid uzayında bulunan aralıklı set halindeki örneklem noktaları, bu noktalar arasındaki uzaklıkların toplamını en küçük (minimum) yapan bir nokta olarak tanımlanır. Tek boyutlu veri serisi içinde veri noktaları arasında uzaklıkları minimum yapma özelligi olan medyanın, çok boyutlu veri uzayında karşıtı olup, bir çokdeğişirli merkezsel konum ölçüsü olur. Geometrik medyan için kullanılan diğer adlar Fermat-Weber noktası veya 1-medyan olur.

İstatistik bilim dalında, Kolmogorov-Smirnov (K-S) sınaması parametrik olmayan istatistik olup Andrey Kolmogorov ve Nikolai Smirnov adlarındaki iki Sovyet bilim insanı tarafından oluşturulmuştur.

F-testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan parameterik çıkarımsal sınama yöntemidir. F-testi sıfır hipotezine göre gerçekte bir F-dağılımı gösteren sınama istatistiği bulunduğu kabul edilen hallerde, herhangi bir istatistiksel sınama yapma şeklidir. Bu çeşit bir istatistiksel sınama önce Ronald Fisher tarafından 1920'li yıllarda tek yönlü varyans analizi için ortaya atılıp kullanılmış ve sonradan diğer şekillerde F-dağılım kullanan sınamalar da ortaya atılınca, bu çeşit sınamalara genel isim olarak F-testi adı verilmesi Ronald Fisher anısına George W. Snecedor tarafından teklif edilip, istatistikçiler tarafından F-testi bir genel isim olarak kabul edilmiştir.

Güven aralığı, istatistik biliminde bir anakütle parametresi için bir çeşit aralık kestirimi olup bir çıkarımsal istatistik çözüm aracıdır. Bir anakütle parametre değerinin tek bir sayı ile kestirimi yapılacağına, bu parametre değerini kapsayabilecek iki sayıdan oluşan bir aralık bulunur. Böylece güven aralıkları bir kestirimin ne kadar güvenilir olduğunu gösterir.

Tek anakütle ortalaması için parametrik hipotez sınaması veya tek-örneklem için sınama veya μ için sınama, bir rastgele örneklem ortalaması ile bu örneklemin çekilmiş olduğunu düşündüğümüz anakütlenin μ ile belirtilen "anakütle ortalaması" hakkında bir hipotez değeri belirtilmesinin anlamlı olup olmadığını araştırmamızı sağlayan parametrik hipotez sınamasıdır.

Pearson ki-kare testi nicel veya nitel değişkenler arasında bağımlılık olup olmadığının, örnek sonuçlarının belirli bir teorik olasılık dağılımına uygun olup olmadığının, iki veya daha fazla örneğin aynı anakütleden gelip gelmediğinin, ikiden fazla anakütle oranının birbirine eşit olup olmadığının ve çeşitli anakütle oranlarının belirli değere eşit olup olmadığının araştırılmasında kullanılır. İstatistik biliminin çıkarımsal istatistik bölümünde ele alınan iki-değişirli parametrik olmayan test analizlerinden olan ve ki-kare dağılımı'nı esas olarak kullanan ki-kare testlerinden en çok kullanılanıdır. İngiliz istatistikçi olan Karl Pearson tarafından 1900'da ortaya çıkartılmıştır.

Treap ya da tree heap, arama, ekleme, silme gibi temel işlemler için log(n) zamanı garanti eden dinamik bir ikili arama ağacıdır. İkili arama ağacına sıralı şekilde ekleme yapılırsa binary arama ağacı bağlantılı listeye dönüşür ve arama ancak O(n) zamanda yapılabilir. Bu durumu ortadan kaldırmak için treap her düğümde binary arama ağacında kullanılan asıl değere ek olarak bir de rastgele olusturulmus bir anahtar tutar. Treap veri yapısı hem asıl değere göre veri ağacının kurallarına uyularak hem de rastgele anahtar ata düğümden küçük olacak şekilde kurulur.

Student'ın t-testi istatistik bilimi içinde incelenen, eğer sıfır hipotez desteklenmekte ise test istatistiğinin bir Student's t-dağılımı gösterdiği hallerde uygulanan çıkartımsal istatistiksel hipotez sınamasıdır. Verilen iki değişik grup sayısal verinin birbirinden anlamlı olarak farklılık gösterip göstermemesini sınamak için kullanılabilir. En sıkça uygulanma örnekleri eğer test istatistiği içinde bulunan ölçek parametre faktörünün değerinin bir normal dağılım gösterdiği bilinmekte olduğu hallerde tatbik edilmektedir. Eğer test istatistiği içinde bulunan ölçek parametresi faktörünün değeri bilinmiyorsa ve bu faktör veriye dayayan bir kestirim ile ifade edilmekte ise test istatistiği bir Student'ın t-dağılımı gösterebilir.