İçeriğe atla

Maxwell ilişkileri

Maxwell ilişkileri arasındaki yolları gösteren akış şemasıdır. P: basınç, T: sıcaklık, V: hacim, S: entropi, α: termal genleşme katsayısı, κ: sıkıştırılabilme, CV: sabit hacimdeki ısı kapasitesi, CP: sabit basınçta ki ısı kapasitesi .

Maxwell ilişkileri İkinci dereceden türevlerin simetri ve termodinamik potansiyellerin tanımlarından türetilebilen termodinamik denklemler dizisidir. Bu ilişkiler 19.yüzyıl fizikçisi James Clerk Maxwell tarafından adlandırılmıştır.

Eşitlikler

Maxwell ilişkilerinin yapısı, sürekli fonksiyonlar için ikinci türevler arasında olan eşitlik beyanıdır. Doğrudan iki değişkenin bir analitik işlev farklılaştırma sırasının alakasız olduğu (Schwarz teoremi) gerçeğinden yola çıkılmıştır. Maxwell ilişkileri söz konusu olduğunda, işlev termodinamik potansiyel xi ve xj potansiyeli için iki farklı doğal değişkenlerdir:

Schwarz' teoremi (genel)

Burada kısmi türevler, diğer tüm doğal değişkenler sabit tutulduğunda alınır. Her termodinamik potansiyel içinn(n - 1)/2 olası Maxwell ilişkisidir.Burada n o potansiyel için doğal değişkenlerin sayısıdır.

En yaygın dört Maxwell ilişkisi

En yaygın olan dört Maxwell ilişkisi termal doğal değişkenine (sıcaklık T veya entropi S 'ye göre dört termodinamik potansiyelin her birinin ikinci türevlerinin eşitlikleridir ve mekanik doğal değişkenleridir (basınç' 'P' 'veya hacim' 'V' '):

Maxwell'in ilişkileri (bilinen adıyla)

Doğal termal ve mekanik değişkenlerinin fonksiyonları olarak potansiyellerin iç enerji U ( S, V ), entalpi H ( S, P , Helmholtz serbest enerjisi F ( T, V ) ve Gibbs serbest enerjisi G ( T, P ). Termodinamik kare bu ilişkileri türetmek için bir anımsatıcı olarak kullanılabilir. Bu ilişkilerin yararlılığı, sıcaklık, hacim ve basınç gibi ölçülebilir miktarlar açısından doğrudan ölçülebilen entropi değişikliklerini nicelikselleştirmeden kaynaklıdır.

Genel Maxwell ilişkileri

Yukarıdakiler sadece Maxwell ilişkileri değildir. Hacim çalışmalarının yanı sıra diğer doğal değişkenleri de içeren diğer çalışma koşulları düşünüldüğünde veya parçacıkların sayısı doğal bir değişken olarak dahil edildiğinde, diğer Maxwell ilişkileri belirginleşir. Örneğin, tek elementli bir gazımız varsa, partiküllerin sayısı N ise, aynı zamanda yukarıdaki dört termodinamik potansiyelin doğal bir değişkendir. Basınca ve partikül sayısına göre entalpi için Maxwell ilişkisi şöyledir:

Burada μ μ kimyasal potansiyeldir. Buna ek olarak, yaygın olarak kullanılan dört yanında başka termodinamik potansiyeller de vardır ve bu potansiyellerin her biri bir Maxwell ilişkileri seti verecektir.

Her denklem, ilişki kullanılarak yeniden ifade edilebilir

Bunlar bazen Maxwell ilişkileri olarak da bilinir.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Del işlemcisi</span>

Yöney analizinde del işlemcisi, 3 boyutlu Kartezyen koordinatlarda nabla işlemcisine denk gelir ve simgesiyle gösterilir.

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Kısmi türev</span>

Kısmi türev çok değişkenli bir işlevin(fonksiyon), sadece ilgili değişkeni sabit değilken alınan türevdir. Bu tarz türevleri içeren denklemlere kısmi diferansiyel denklem denir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Termodinamiğin(Isıldevinimin) ikinci yasası, izole sistemlerin entropisinin asla azalamayacağını belirtir. Bunun sebebini izole sistemlerin termodinamik dengeden spontane olarak oluşmasıyla açıklar. Buna benzer olarak sürekli çalışan makinelerin ikinci kanunu imkânsızdır.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Akım fonksiyonu</span>

Akım Fonksiyonu, eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz akışlar için tanımlanır. Akış hızı bileşenleri, skaler akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı. Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

<span class="mw-page-title-main">Joule genişlemesi</span>

Joule genişlemesi termodinamikte (ısıdevinimsel) geri dönülmez (tersinemez) bir süreçtir. Burada ısısal olarak yalıtılmış bölmeli kabın bir tarafına belli bir hacimde gaz konur, kalan diğer tarafı ise boşaltılmıştır. Kabın ortasındaki engel kaldırılır ve bir taraftaki gaz tüm kaba yayılır.

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

Hamilton mekaniği klasik mekaniğin tekrar formüle edilmesiyle geliştirilmiş ve Hamilton olmayan klasik mekanik ile aynı sonuçları öngörmüş bir teoridir. Teoriye daha soyut bir bakış açısı kazandıran Hamilton mekaniği klasik mekaniğe kıyasla farklı bir matematiksel formülasyon kullanmaktadır. Tarihi açıdan önemli bir çalışma olan Hamilton mekaniği ileriki yıllarda istatistiksel mekanik ve kuantum mekaniği konularının da geliştirilmesine önemli katkılarda bulunmuştur.

Elektrokimyada Nernst denklemi, bir elektrokimyasal reaksiyonun indirgenme potansiyelini ; indirgeme ve oksidasyona uğrayan kimyasal türlerin standart elektrot potansiyeli, sıcaklığı ve aktiflikleri ile ilişkilendiren bir denklemdir. Denklemi formüle eden Alman fiziksel kimyacı Walther Nernst'in adını almıştır.