Doğrusal cebirde veya daha genel ifade ile matematiktematris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılardatemel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, (matrisin "boyutu" olarak adlandırılır) ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.
Vektörler gibi herhangi bir boyutlu matrislerde de, nokta çarpım yapılabilir. Bu işlem, matrisin her bir girişinin (ögesinin) aynı sayı (skaler) ile çarpılmasıdır. Matrislerin toplanması veya çıkarılması işlemleri de benzer şekilde yapılır.
Matrislerle ilgili en basit çarpma formu skaler çarpmadır.
Bir A matrisinin λskaleri ile sol skaler çarpma işlemi sonucunda A ile aynı boyutlu fakat farklı bir matris elde edilir. Bu λA çarpma işlemi, aşağıdaki şekilde ifade edilir;
Daha açık ifade ile:
Benzer şekilde, bir A matrisinin λ skaleri ile sağ skaler çarpma işlemi şöyledir:
Daha açık ifade ile:
halkada eğer bir değişme özelliği varsa, örneğin; reel veya karmaşık sayılarda bu iki çarpım (skaler çarpım ve nokta çarpım), aynı anlama gelir ve basitçe skaler çarpım olarak adlandırılır. Fakat matrisler için, daha genel ifade ile halka (örneğin dördey) için değişme özelliği yoksa bu iki çarpım aynı anlama gelmez. Bir reel skaler ve matris şöyle olsun:
Dördeyin skalerleri ve matrisleri de şöyle olsun:
Burada i, j, k, dördeyin birimleridir. Dördeyde çarpma işleminin değişmeli olamaması, ij = +k ile ji = −k değişiminin yapılmasını engeller.
Matris çarpma (iki matris)
İki matrisin çarpılacağını varsayalım.
Matris çarpmanın genel tanımı
Eğer A, n × m boyutlu bir matris ve B, m × p boyutlu bir matris ise;
ABmatris çarpma (çarpım işaretsiz veya noktasız ifade edilir), n × p matrisi olarak ifade edilir.
Burada her bir i, j girişi, Aik girişleri A matrisinin i satırı) ile Bkj girişleri (B matrisinin j sütunu) çarpımıdır. k = 1, 2, ..., m ve, k sonuçlar toplamı şöyle ifade edilir:
Girişler genellikle sayı veya ifadelerle belirtilir. Fakat matrislerin kendisi de bir giriş olabilir. (Blok matrise bakınız).
Şekilsel gösterim
Sağdaki şekil, A ve B iki matrisinin çarpımını şematik olarak gösteriyor. Sonuçta elde edilen matris 4'e 3'lük X matrisi olsun.
Çünkü AB ile BA, eşzamanlı olarak tanımlanamazlar. Tanımlansalar bile eşit olamazlar. Bu, sayıların çarpılmasına terstir. Matris çarpımını büyüklüğünü kelimelerle ifade etmek için; A nın B ile "ön çarpımı (veya sol çarpımı)" BA olurken, "A nın C ile son çarpımı (veya sağ çarpımı) " AC olur. Matrisin tüm girişleri bir birime sahip halkada bulunduğu ve n > 1 olduğu müddetçe, halkada bir çift n × n değiştirilemez matris olur. Buna tek istisna birim matris (veya herhangi bir skaler çarpımı)dır.
Burada λ bir skalerdir. Eğer matrisin tüm girişleri reel veya karmaşık sayı ise, tüm dört miktarda eşit olur. Daha genel bir ifade ile, eğer λ matrisin girişlerinin halkasının merkezinde ise, tüm dördü de eşit olur. Çünkü bu durumda, tüm X matrisleri için, λX = Xλ olur. Dizin gösterimi sırasıyla şöyle olur:
Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.
Doğrusal dönüşüm, bir fonksiyon çeşididir. T, M boyutlu bir vektörden N boyuta bir doğrusal dönüşüm ise, o zaman;
Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.
Matematikte matris veya dizey, dikdörtgen bir sayılar tablosu veya daha genel bir açıklamayla, toplanabilir veya çarpılabilir soyut miktarlar tablosudur. Dizeyler daha çok doğrusal denklemleri tanımlamak, doğrusal dönüşümlerde çarpanların takibi ve iki parametreye bağlı verilerin kaydedilmesi amacıyla kullanılırlar. Dizeylerin toplanabilir, çıkartılabilir, çarpılabilir, bölünebilir ve ayrıştırılabilir olmaları, doğrusal cebir ve dizey kuramının temel kavramı olmalarını sağlamıştır.
Pauli matrisleri 2 × 2' lik, karmaşık sayılar içeren Hermisyen ve üniter matrislerden oluşan bir settir. Genellikle Yunan alfabesindeki 'sigma' (σ), harfiyle sembolize edilirler. Bu matrisler:
Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.
Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.
Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.
İstatistik'te, kovaryans matrisi, rassal vektörlerin elemanları arasındaki kovaryansları içeren matristir. Kovaryans matrisi, skaler-değerli rassal değişkenler için var olan varyans kavramının çok boyutlu durumlara genelleştirilmesidir.
Determinant kare bir matris ile ilişkili özel bir sayıdır.
Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır
Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:
Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.
Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.
Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.
Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.
Successive Over-Relaxation (SOR) lineer denklem sistemlerini çözmek ve sonuca daha hızlı yakınsamak için sayısal lineer cebirde kullanılan bir çeşit Gauss-Seidel metodudur. Daha yavaş yakınsamalar içinse benzer bir metot olan iterative metot kullanılır.
Lineer cebirde, özdeğer ayrışımı ya da eigen ayrışımı, bir matrisin özdeğerleri ve özvektörleri cinsinden ifade edilen daha basit matrislere ayrıştırılmasıdır. Sadece kare matrisler özdeğerlerine ayrıştırılabilir.
Matematikte, koordinat vektör uzayının ( veya olarak gösterilir) standart tabanı ya da standart bazı (aynı zamanda doğal baz veya ilkesel baz olarak da geçer), 1'e eşit olan dışında tüm bileşenleri sıfır olan vektörlerden oluşan tabanıdır. Örneğin, gerçek sayı çiftleri (x, y) tarafından kurulan öklitçi düzlemi durumunda, standart baz vektörler tarafından oluşturulur.
Parçacık fiziğinde, Fermi etkileşimi beta bozunmasının 1933'te Enrico Fermi tarafından önerilmiş bir açıklamasıdır. Teori, dört fermiyonun birbiriyle direkt etkileştiğini varsayar. Bu etkileşim bir nötronun bir elektron, bir nötrino ve bir protonla doğrudan bağlanmasıyla bir nötronun beta bozunmasını açıklar.
Bu sayfa, bu Vikipedi makalesine dayanmaktadır. Metin, CC BY-SA 4.0 lisansı altında mevcuttur; ek koşullar uygulanabilir. Görseller, videolar ve sesler kendi lisansları altında mevcuttur.