İçeriğe atla

Matematiksel seriler listesi

Aşağıdaki matematiksel seriler listesi, sonlu ve sonsuz toplamlar için formüller içerir. Toplamları değerlendirmek için diğer araçlarla birlikte kullanılabilir.

  • Burada , değerine sahip olduğu kabul edilir
  • , 'in kesirli kısmını ifade eder.
  • bir Bernoulli polinomudur.
  • bir Bernoulli sayısıdır ve burada; 'dir.
  • bir Euler sayısıdır.
  • Riemann zeta fonksiyonudur.
  • gama fonksiyonudur.
  • bir poligama fonksiyonudur.
  • bir polilogaritmadır.
  • binom katsayısıdır.
  • , 'in üstel'ini belirtir.

Kuvvetler toplamı

Bkz. Faulhaber formülü.

İlk birkaç değer şunlardır:

Bkz. zeta sabitleri.

İlk birkaç değer şunlardır:

  • (Basel problemi)

Kuvvet serileri

Düşük mertebeli polilogaritmalar

Sonlu toplamlar:

  • , (geometrik seri)

Sonsuz toplamlar, için geçerli (bkz. polilogaritma):

Aşağıdaki, düşük tam sayı mertebeli polilogaritmaları kapalı form içinde özyinelemeli olarak hesaplamak için yararlı bir özelliktir:

Üstel fonksiyon

  • (bkz. Poisson dağılımı ortalaması)
  • (bkz. Poisson dağılımının ikinci momenti)

burada; Touchard polinomlarıdır.

Trigonometrik, ters trigonometrik, hiperbolik ve ters hiperbolik fonksiyonlar ilişkisi

  • (versine)
  • [1] (haversine)

Değiştirilmiş faktöriyel paydalar

  • [2]
  • [2]

Binom katsayıları

  • (bkz Binom teoremi § Genelleştirilmiş Newton binom teoremi)
  • [3]
  • [3] , Catalan sayıları üreteç fonksiyonu
  • [3] , Merkezi binom katsayıları üreteç fonksiyonu
  • [3]

Harmonik sayılar

(Bkz harmonik sayılar, kendileri olarak tanımlanmıştır)

  • [2]
  • [2]

Binom katsayıları

  • (bkz Çoklu küme)
  • (bkz Vandermonde özdeşliği)

Trigonometrik fonksiyonlar

Sinüsler ve kosinüsler toplamı, Fourier serileri'nde ortaya çıkar.

  • ,[4]
  • [5]
  • [6]

Rasyonel fonksiyonlar

  • [7]
  • 'nin herhangi bir rasyonel fonksiyon'unun sonsuz bir serisi, burada açıklandığı gibi kısmi kesirlere ayrıştırma[8] kullanılarak poligama fonksiyonu'nun sonlu bir serisine indirgenebilir. Bu gerçek, rasyonel fonksiyonların sonlu serilerine de uygulanabilir ve seri çok sayıda terim içerdiğinde bile sonucun sabit zamanda hesaplanmasına izin verir.

Üstel fonksiyon

  • (bkz. Landsberg–Schaar bağıntısı)

Nümerik seriler

Bu numerik seriler, yukarıda listelenen serilerdeki sayılar eklenerek bulunabilir.

Alternatif harmonik seriler

Faktöriyellerin tersinin toplamı

Trigonometri ve π

Üçgensel sayıların tersi

Burada;

Dörtyüzlüsel sayıların tersi

Burada;

Üstel ve logaritmalar

Ayrıca bakınız

Notlar

  1. ^ Weisstein, Eric W. "Haversine". MathWorld. Wolfram Research, Inc. 10 Mart 2005 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Kasım 2015. 
  2. ^ a b c d Wilf, Herbert R. (1994). generatingfunctionology (PDF). Academic Press, Inc. 27 Nisan 2021 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 13 Temmuz 2023. 
  3. ^ a b c d "Theoretical computer science cheat sheet" (PDF). 10 Haziran 2003 tarihinde kaynağından (PDF) arşivlendi. 
  4. ^ fonksiyonun Fourier açılımını aralığında hesaplayın:
  5. ^ "Bernoulli polynomials: Series representations (subsection 06/02)". Wolfram Research. 28 Eylül 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 2 Haziran 2011. 
  6. ^ Hofbauer, Josef. "A simple proof of 1 + 1/22 + 1/32 + ··· = π2/6 and related identities" (PDF). 20 Temmuz 2007 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 2 Haziran 2011. 
  7. ^ Sondow, Jonathan; Weisstein, Eric W. "Riemann Zeta Function (eq. 52)". MathWorld—A Wolfram Web Resource. 17 Ağustos 2000 tarihinde kaynağından arşivlendi. 
  8. ^ Abramowitz, Milton; Stegun, Irene (1964). "6.4 Polygamma functions". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. s. 260. ISBN 0-486-61272-4. 

Kaynakça

  • İntegraller listesi içeren birçok kitapta, seriler listesi de vardır.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">İntegral tablosu</span> Vikimedya liste maddesi

İntegral, Matematikteki temel işlemlerden biridir. Bu maddede yaygın integrallerin hesaplanışını bulacaksınız.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

Aşağıdaki liste üstel fonksiyonların integrallerini içermektedir. İntegral fonksiyonlarının tüm bir listesi için lütfen İntegral tablosu sayfasına bakınız.

where

Aşağıdaki liste trigonometrik fonksiyonların integrallerini içermektedir. İntegral fonksiyonlarının tüm bir listesi için lütfen İntegral tablosu sayfasına bakınız.

Periyodik fonksiyon, matematikte belli zaman aralığıyla kendini tekrar eden olguları ifade eden fonksiyonlara verilen isimdir. Tekrar etme süresi "periyot" olarak bilinir. Trigonometrik fonksiyonlar en tipik periyodik fonksiyonlardır. Bununla birlikte, diğer periyodik fonksiyonlar da trigonometrik fonksiyonların toplamı olarak ifade edilebilirler.

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

<span class="mw-page-title-main">Fresnel integrali</span>

Fresnel integrali, S(x) ve C(x), iki transendental fonksiyon'dur. Augustin-Jean Fresnel'e atfedilmiştir ve optikte kullanılmaktadır. Yakın alan Fresnel difraksiyon fenomeninde ortaya çıkar; aşağıdaki integral gösterimi ile tanımlanırlar:

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Gauss-Legendre Algoritması π sayısının basamaklarını hesaplamak için kullanılan bir algoritmadır. Sadece 25 iterasyonda π sayısının 45 milyon basamağını doğru olarak hesaplıyor.

<span class="mw-page-title-main">Hiperbolik fonksiyon</span>

Matematikte, hiperbolik fonksiyonlar sıradan trigonometrik fonksiyonların analogudur. Temel hiperbolik fonksiyonlar hiperbolik sinüs "sinh", hiperbolik kosinüs "cosh", bunlardan türetilen hiperbolik tanjant "tanh" ve benzer fonksiyonlardır. Ters hiperbolik fonksiyonlar alan hiperbolik sinüsü "arsinh" ve benzeri fonksiyonlardır.

Jacobi-Anger açılımı veya Jacobi-Anger eşitliği, matematikte trigonometrik fonksiyonların harmonikleri temel alınarak yapılan bir üstel açılımdır. Fizikte ve sinyal işlemede kullanılır. Eşitlik adını 19. yüzyıl matematikçileri Carl Jacobi ve Carl Theodor Anger'den almıştır.

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Matematikte Euler sayıları, Taylor serisi açılımıyla tanımlanan bir En tam sayı dizisidir..

Sinc fonksiyonu matematik, fizik ve mühendislikte kullanılan bir trigonometrik fonksiyondur. Fonksiyonun normalize edilmemiş ve normalize edilmiş iki şekli vardır.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

<span class="mw-page-title-main">Trigonometrik integral</span> bir integral tarafından tanımlanan özel fonksiyon

Matematikte, trigonometrik integraller trigonometrik fonksiyonları içeren temel olmayan integrallerin ailesidir.

<span class="mw-page-title-main">Trigonometrik yerine koyma</span> trigonometrik fonksiyonları içeren integrallerin hesaplanması için yöntem

Matematikte, bir trigonometrik yerine koyma veya trigonometrik ikame, trigonometrik fonksiyon yerine başka bir ifadeyi koyar. Kalkülüste trigonometrik ikameler integralleri hesaplamak için kullanılan bir tekniktir. Bu durumda, radikal fonksiyon içeren bir ifade trigonometrik bir ifade ile değiştirilir. Trigonometrik özdeşlikler cevabı basitleştirmeye yardımcı olabilir. Diğer yerine koyma yoluyla integrasyon yöntemlerinde olduğu gibi, belirli bir integrali değerlendirirken, integrasyon sınırlarını uygulamadan önce, ters türevin sonucunu tam olarak çıkarmak daha basit olabilir.

<span class="mw-page-title-main">Pisagor trigonometrik özdeşliği</span> sin² θ + cos² θ = 1

Pisagor trigonometrik özdeşliği, daha basit ifadeyle Pisagor özdeşliği olarak da adlandırılır, Pisagor teoremini trigonometrik fonksiyonlar cinsinden ifade eden bir özdeşliktir. Açıların toplam formülleri ile birlikte, sinüs ve kosinüs fonksiyonları arasındaki temel bağıntılardan biridir. Özdeşlik şu şekildedir: