İçeriğe atla

Matematiksel problem

Matematik problemi, matematik yöntemleriyle temsil edilmeye, analiz edilmeye ve muhtemelen çözülmeye yatkın bir problemdir. Bu, güneş sistemindeki gezegenlerin yörüngelerini hesaplamak gibi gerçek dünya problemi veya Hilbert problemleri gibi daha soyut doğası olan bir problem ya da Russell Paradoksu gibi matematiğin doğasına atıfta bulunan bir problem de olabilir.

Çözülen matematik probleminin sonucu resmi olarak gösterilir ve incelenir.

Gerçek dünya problemleri

Gayri resmi "gerçek dünya" matematik problemleri, "Adem'in beş elması vardır ve Can'a üç tane verdi. Kaç tane elması kaldı?" gibi somut bir ortamla ilgili sorulardır. Bu tür soruları çözmek, problemi çözmek için gerekli matematiği bilse bile, genellikle "5 - 3" gibi normal matematik egzersizlerinden daha zordur. Kelime problemleri olarak bilinen bu problemler, matematik eğitiminde öğrencilere gerçek dünyadaki durumları matematiğin soyut diline bağlamayı öğretmek için kullanılır.

Genel olarak, gerçek dünyadaki bir problemi çözmek için matematiği kullanmak amacıyla ilk adım, problemin bir matematiksel modelini oluşturmaktır. Bu, problemin ayrıntılarından soyutlamayı içerir ve modelleyici, orijinal problemi matematiksel bir probleme çevirirken gerekli yönleri kaybetmemeye dikkat etmelidir. Matematik dünyasında problem çözüldükten sonra, çözüm orijinal problemin bağlamına geri çevrilmelidir.

Dışarıdan bakıldığında, gerçek dünyada basitten karmaşığa çeşitli fenomenler vardır. Bazıları mikroskobik gözlemle karmaşık bir mekanizmaya sahipken, basit dış görünüşe sahiptirler. Gözlemin ölçeğine ve mekanizmanın kararlılığına bağlıdır. Sadece basit model tarafından açıklanan basit olgunun durumu değil, aynı zamanda basit modelin karmaşık olguyu açıklayabileceği durum da vardır. Örnek modellerden biri, kaos teorisinin bir modelidir.

Soyut problemler

Matematiğin tüm alanlarında soyut matematik problemleri ortaya çıkar. Matematikçiler genellikle kendi istedikleri için onları incelerken, böyle yaparak matematik alanı dışında uygulama bulan sonuçlar elde edilebilir. Teorik fizik tarihsel olarak zengin bir ilham kaynağı olmuştur ve olmaya devam etmektedir.

Klasik geometrinin sadece pusula ve düz kenarlı yapılarını kullanarak Daireyi kareleştirmek ve açıyı üçe bölmek ve genel beşinci dereceden denklemi cebirsel olarak çözmek gibi bazı soyut problemlerin çözülemeyeceği kesin olarak kanıtlanmıştır. Ayrıca çözümsüzlüğü kanıtlanamaz, Turing makinelerinin durma problemi gibi karar verilemeyen problemler de mevcuttur.

Pek çok soyut problem rutin olarak çözülebilir, diğerleri henüz tam bir çözüme yol açmadan bazı önemli ilerlemeler kaydedildiğinden, büyük bir çabayla çözüldü ve yine de Goldbach varsayımı ve Collatz varsayımı gibi bazıları tüm çözüm girişimlerine direndi. Nispeten yakın zamanda çözülen bazı iyi bilinen zor soyut problemler, Dört renk teoremi, Fermat'ın Son Teoremi ve Poincaré varsayımıdır.

Hayal gücümüzde yeni bir ufuk oluşturan matematiksel yeni fikirlerin tümü gerçek dünyaya uymuyor. Bilim, diğer her şeye karşı gelse bile, yalnızca yeni matematiği araştırmanın bir yoludur.[1] Modern matematiğin görüşüne göre, bir matematik problemini çözmenin, satranç (veya shogi veya go) gibi belirli kurallarla kısıtlanan bir sembol işlemine resmen indirgenebileceğini düşünmüştür.[2] Bu anlamda, Wittgenstein matematiği bir dil oyununa çevirir (de: Sprachspiel). Yani gerçek problemle ilgisi olmayan bir matematik problemi matematikçi tarafından önerilmekte veya çözmeye çalışılmaktadır. Ve matematikçinin kendisi için matematik çalışma ilgisi, eğer matematik bir oyunsa, matematiksel çalışmanın değer yargılarında yenilikten veya farklılıktan fazlasını yapmış olabilir. Popper, matematikte kabul edilebilen ancak diğer bilim alanlarında kabul görmeyen bu bakış açısını eleştirir.

Bilgisayarların, matematikçilerin yaptıklarını yapmak için herhangi bir motivasyon hissetmelerine gerek yoktur.[3][4] Biçimsel tanımlar ve bilgisayar kontrollü çıkarımlar matematik biliminin kesinlikle merkezindedir. Bilgisayarla kontrol edilebilir, sembol tabanlı metodolojilerin canlılığı, yalnızca kuralların doğasında değil, hayal gücümüze de bağlıdır.[4]

Problemlerinin egzersizlere indirgenmesi

Değerlendirme için problem çözmeyi kullanan matematik eğitimcileri Alan H. Schoenfeld tarafından ifade edilen bir soruna sahiptir:

Çok farklı problemlerin kullanıldığı yıldan yıla test puanları nasıl karşılaştırılabilir? (Benzer problemler her yıl kullanılırsa, öğretmenler ve öğrenciler ne olduklarını öğrenecekler, öğrenciler bunları uygulayacaklar: problemler alıştırmaya dönüşecek ve test artık problem çözmeyi değerlendirmeyecektir).[5]

Aynı sorun neredeyse iki yüzyıl önce Sylvestre Lacroix tarafından da dile getirilmişti:

... öğrencilerin birbirleriyle iletişim kurabilecekleri soruları çeşitlendirmek gerekir. Sınavda başarısız olsalar da daha sonra geçebilirler. Bu nedenle, soruların dağılımı, konuların çeşitliliği veya cevaplar, adayları bire bir kesin olarak karşılaştırma fırsatını kaybetme riski taşır.[6]

Problemlerin alıştırmalara bu şekilde indirgenmesi, tarihteki matematiğin karakteristiğidir. Örneğin, 19. yüzyılda Cambridge Mathematical Tripos'un hazırlıklarını anlatan Andrew Warwick, şunları yazdı:

... o zamanlar standart problemlerin çoğu ailesi, 18. yüzyılın en büyük matematikçilerinin yeteneklerini başlangıçta zorlamıştı.[7]

Ayrıca bakınız

Notlar

  1. ^ 超ひも理論を疑う:「見えない次元」はどこまで物理学か?. 1st (Japonca). Tokyo: 早川書房. 15 Şubat 2008. s. 17. ISBN 978-4-15-208892-5. 
    Hiding in the Mirror: The Quest for Alternative Realities, from Plato to String Theory by way of Alice in Wonderland, Einstein, and The Twilight Zone. ABD: Penguin Group. 2005. 
  2. ^ 集合論1. 1st. (Japonca). Tokyo: 東京図書. 30 Eylül 1968. ss. 1-4.  translated from
    Théorie des ensembles. 3. Paris: Hermann. 1966. 
  3. ^ Newby & Newby 2008, "The second test is, that although such machines might execute many things with equal or perhaps greater perfection than any of us, they would, without doubt, fail in certain others from which it could be discovered that they did not act from knowledge, but solely from the disposition of their organs: for while reason is an universal instrument that is alike available on every occasion, these organs, on the contrary, need a particular arrangement for each particular action; whence it must be morally impossible that there should exist in any machine a diversity of organs sufficient to enable it to act in all the occurrences of life, in the way in which our reason enable us to act." translated from Descartes 1637, page =57 8 Aralık 2019 tarihinde Wayback Machine sitesinde arşivlendi., "Et le second est que, bien qu'elles fissent plusieurs choses aussy bien, ou peutestre mieux qu'aucun de nois, ells manqueroient infalliblement en quelques autres, par lesquelles on découuriroit quelles n'agiroient pas par connoissance, mais seulement par la disposition de leurs organs. Car, au lieu que la raison est un instrument univeersel, qui peut seruir en toutes sortes de rencontres, ces organs ont besoin de quelque particliere disposition pour chaque action particuliere; d'oǜ vient qu'il est moralement impossible qu'il y en ait assez de diuers en une machine, pour la faire agir en toutes les occurrences de la vie, de mesme façon que nostre raison nous fait agir."
  4. ^ a b Heaton, Luke (2015). "Lived Experience and the Nature of Facts". A Brief History of Mathematical Thought. Great Britain: Robinson. s. 305. ISBN 978-1-4721-1711-3. 
  5. ^ Alan H. Schoenfeld (editor) (2007) Assessing mathematical proficiency, preface pages x,xi, Mathematical Sciences Research Institute, Cambridge University Press 978-0-521-87492-2
  6. ^ S. F. Lacroix (1816) Essais sur l’enseignement en general, et sur celui des mathematiques en particulier, page 201
  7. ^ Andrew Warwick (2003) Masters of Theory: Cambridge and the Rise of Mathematical Physics, page 145, University of Chicago Press 0-226-87375-7

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Matematiksel soyutlama</span>

Matematikte soyutlama, matematiksel bir kavramın, başlangıçta ilişkili olabileceği herhangi bir gerçel dünya nesnesine olan bağımlılığı ortadan kaldırıp genelleştirerek daha geniş bir uygulama alanı sağlamak için, özünü çıkarma işlemidir.

Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.

<span class="mw-page-title-main">Henri Poincaré</span> Fransız matematikçi ve fizikçi

Jules Henri Poincare Fransız matematikçi, teorik fizikçi, mühendis ve bilim felsefecisiydi. Yaşamı boyunca var olduğu şekliyle disiplinin tüm alanlarında mükemmel olduğundan, genellikle bir bilge ve matematikte "Son Evrenselci " olarak tanımlanır.

<span class="mw-page-title-main">Matematikçi</span> matematik problemlerini çözmek için çalışmalarında kapsamlı bir matematik bilgisini kullanan kişi

Bir matematikçi, genellikle matematik problemlerini çözmek için çalışmalarında kapsamlı bir matematik bilgisini kullanan kişidir. Matematikçiler sayılar, veriler, miktar, yapı, alan, modeller ve değişimle ilgilenirler.

Kombinatorik, genellikle sonlu soyut nesneleri konu alan soyut matematik dalıdır. Dalla ilgilenen matematikçilere kombinatoryalist veya kombinatorist denir. Matematiğin, cebir, olasılık kuramı, ergodik teori ve geometri gibi farklı dallarıyla da ilgili olan kombinatorik ayrıca bilgisayar bilimi ve istatistiksel fizik gibi dallarda uygulanmıştır. Kombinatorik dahilindeki konulardan bazıları; belirli kriterleri karşılayan nesnelerin "sayılması", kriterlerin ne zaman karşılanmış olacağına karar vermek, kriterleri karşılayan nesnelerin inşa edilmesi ve analiz edilmesi, "en büyük", "en küçük" veya "optimal" nesneleri bulmak ve bu nesnelerin sahip olabileceği cebirsel yapıları bulmaktır.

Collatz sanısı, Lothar Collatz tarafından ortaya atılan, 1'den büyük tüm doğal sayıların 1'e indirebildiğini anlatan bir konjektür. Ancak daha kesinleşememiştir. Çünkü; 268 ≈ 2.951×1020. sayısına kadar olan sayılar, ancak kanıtlanabildi. Bu sayı ve daha yüksekleri ise daha hâlâ matematikçiler tarafından uğraşılmaktadır.

<span class="mw-page-title-main">Hilbert problemleri</span>

Hilbert problemleri Alman matematikçi David Hilbert tarafından 1900 yılında yayınlanan 23 problemden oluşur. O zamanlar problemlerden hiçbiri çözülemedi ve 20. yüzyıl matematikçileri üzerinde oldukça etkili oldu. Hilbert problemlerinin 10 tanesini Uluslararası Matematikçiler Kongresi'nin 8 Ağustos'ta Paris Üniversitesi'teki kongresinde sundu. Problemlerin tam listesi daha sonra 1902'de Mary Frances Winston Newson tarafından İngilizce olarak Bulletin of the American Mathematical Society'de yayınlandı.

En genel anlamda, soyut matematik, matematiğin soyut kavramlarını inceleyen bir kolu olarak adlandırılabilir. 18. yüzyıldan bu yana, soyut matematik matematiksel aktivitenin bir kategorisi olarak kabul edilmiştir. Bazen spekülatif matematik olarak da kategorize edildiği olur. Soyut matematik navigasyon, mühendislik, fizik, astronomi gibi çeşitli alanlarda kullanılmaktadır. Soyut matematiğe dair en güçlü öngörülerden biri de soyut matematiğin ille de uygulamalı matematik olmak zorunda olmadığıdır; soyut şeylerleri onların içsel doğasını anlayarak çalışmak onların doğada nasıl apaçık biçimde nasıl olduğu ile ilgili olmak zorunda değildir. Soyut matematik ve uygulamalı matematik arasındaki felsefi açı farkına rağmen pratikte birçok örtüşme noktalarının olduğu da aşikardır.

Matematik ve kuramsal fizikte, ayna simetrisi Calabi-Yau dağıtımlar olarak adlandırılan geometrik cisimler arasındaki ilişkidir. Bu olay, şekilleri geometrik olarak farklı görünen altı boyutlu iki dağıtım için gerçekleşebilir ama yine de eğer bu boyutlar sicim kuramının gizli boyutları ise eşdeğerdirler. Bu durumda, altı boyutlu dağıtımlar için biri diğerinin aynası denir. Ayna simetrisi ilk olarak fizikçiler tarafından keşfedilmiştir. 1990'larda ne zaman ki Philip Candelas, Xenia de la Ossa, Paul Green ve Linda Parks ayna simetrisinin Calabi-Yau dağıtımında rasyonel dalgaların sayımında kullanılabileceğini, yani eskiden beri süre gelen problemlerin çözümünde kullanılabileceğini göstermiş; o zaman matematikçiler ayna simetrisiyle ilgilenmeye başlamışlardır. Ayna simetrisine orijinal yaklaşım kuramsal fizikteki kesin olmayan fikirlere dayansa da matematikçiler ayna simetrisindeki bazı matematiksel tahminlerde kesin ispat yapmışlardır. Bugün, ayna simetrisi soyut matematikte ana araştırma konusudur ve matematikçiler fizikçilerin görülerine dayanan ayna simetrisi için matematiksel bir anlayış geliştirmeye çalışmaktadırlar. Ayrıca, ayna simetrisi sicim kuramındaki hesaplamalar için temel bir araçtır. Ayna simetrisi için ana yaklaşımlar Maksim Kontseviç'in homolog ayna simetrisi programını ve Andrew Strominger, Shing-Tung Yau ve Eric Zaslow'un SYZ varsayımını içerir.

Tarih boyunca matematiğin konu çeşitliliği ve derinliği artmaktadır, matematiği kavrama, birçok konuyu matematiğin daha genel alanlarına göre sınıflandırma ve düzenleme için bir sistem gerektirir. Bir dizi farklı sınıflandırma şeması ortaya çıkmıştır ve bazı benzerlikleri paylaşsalar da, kısmen hizmet ettikleri farklı amaçlara bağlı olarak farklılıkları vardır. Ek olarak, matematik geliştirilmeye devam ettikçe, bu sınıflandırma şemaları da yeni oluşturulan alanları veya farklı alanlar arasında yeni keşfedilen bağlantıları dikkate alacak şekilde değişmelidir. Farklı alanlar arasındaki sınırı aşan, genellikle en aktif olan bazı konuların sınıflandırılması daha zor hale gelir.

Dinostratus, Menaechmus'un kardeşi olan Yunan matematikçi ve geometriciydi. Daireyi kareleştirme problemini çözmek için kuadratrisi kullanmasıyla tanınır.

<span class="mw-page-title-main">Matematik tarihi</span> matematik biliminin tarihi

Matematik tarihi, öncelikle matematikteki keşiflerin kökenini araştıran ve daha az ölçüde ise matematiksel yöntemleri ve geçmişin notasyonunu araştıran bir bilimsel çalışma alanıdır. Modern çağdan ve dünya çapında bilginin yayılmasından önce, yeni matematiksel gelişmelerin yazılı örnekleri yalnızca birkaç yerde gün ışığına çıktı. MÖ 3000'den itibaren Mezopotamya eyaletleri Sümer, Akad, Asur, Eski Mısır ve Ebla ile birlikte vergilendirmede, ticarette, doğayı anlamada, astronomide ve zamanı kaydetmede/takvimleri formüle etmede aritmetik, cebir ve geometri kullanmaya başladı.

Eski Mısır matematiği, Eski Mısır'da yaklaşık MÖ 3000 ila 300 yılları arasında, Eski Mısır Krallığı'ndan kabaca Helenistik Mısır'ın başlangıcına kadar geliştirilen ve kullanılan matematiktir. Eski Mısırlılar, saymak ve genellikle çarpma ve kesirleri içeren yazılı matematik problemlerini çözmek için bir sayı sistemi kullandılar. Mısır matematiğinin kanıtı, papirüs üzerine yazılmış, hayatta kalan az sayıda kaynakla sınırlıdır. Bu metinlerden, eski Mısırlıların, mimari mühendislik için yararlı olan üç boyutlu şekillerin yüzey alanını ve hacmini belirlemek gibi geometri kavramlarını ve sabit kesen yöntemi ve ikinci dereceden denklemler gibi cebir kavramlarını anladıkları bilinmektedir.

<span class="mw-page-title-main">George Pólya</span> Macar matematikçi (1887 – 1985)

George Pólya Macar matematikçi. 1914-1940 yılları arasında ETH Zürih'te ve 1940-1953 yılları arasında Stanford Üniversitesi'nde matematik profesörüydü. Kombinatorik, sayı teorisi, sayısal analiz ve olasılık teorisine temel katkılarda bulundu. Sezgisel analiz ve matematik eğitimindeki çalışmalarıyla da tanınır. Marslılardan biri olarak tanımlandı.

Bu, matematikçilere, matematik kullanan bilim insanlarına veya matematikçilere atıfta bulunan uzun metrajlı filmlerin bir listesidir.

<span class="mw-page-title-main">Matematiksel sosyoloji</span>

Matematik sosyolojisi, hem sosyolojik araştırmalarda matematiğin kullanımıyla hem de matematik ile toplum arasında var olan ilişkilerin araştırılmasıyla ilgilenen disiplinler arası bir araştırma alanıdır.

<span class="mw-page-title-main">Abraham Robinson</span> Amerikalı matematikçi (1918 – 1974)

Abraham Robinson, özellikle standart dışı analizin geliştirilmesiyle tanınan bir matematikçidir. Matematiksel olarak titiz bir sistem sayesinde sonsuz küçükler ve sonsuz sayılar modern matematiğe yeniden dahil edildi. Robinson'un makalelerinin neredeyse yarısı soyut matematik yerine uygulamalı matematik üzerinedir.

<i>Yöntem Üzerine Konuşma</i>

Discours de la Méthode ya da tam haliyle Discours de la Méthode Pour bien conduire sa raison, et chercher la vérité dans les sciences, Fransız filozof René Descartes tarafından 1637 yılında yayınlanan bir kitaptır. Bu kitap, Descartes'ın felsefi düşüncelerinin yanı sıra matematik, bilim ve bilgi felsefesi konularını da içermektedir.

Vitushkin varsayımı, matematikte karmaşık analiz ve olasılık teorisinde bir konu olarak ortaya çıkar. Bu varsayım, bir Fransız matematikçi olan Jean-Pierre Kahane ve bir Rus matematikçi olan Boris Levin tarafından 1964 yılında önerilen bir problemi tanımlar. Vitushkin varsayımı, Kahane ve Levin tarafından Vitushkin cebiri ve analizi ile ilgili bir dizi açık problemi çözmeye çalışırken önerildi.