İçeriğe atla

Matematiksel ispat

Öklid'in Elementlerinden bir kanıt ( Kitap I, Önerme I)

Matematiksel ispat, matematiksel bir ifade için türetilmiş varsayımların mantıksal olarak doğru olduğu sonucunu garantileyen, çıkarımsal bir argümandır. Argüman, teoremler gibi önceden oluşturulmuş diğer ifadeleri kullanabilir; lakin prensipte her delil, kabul edilen çıkarım kurallarıyla birlikte yalnızca aksiyom olarak bilinen belirli temel veya orijinal varsayımlar kullanılarak oluşturulabilir.

Matematiksel tanıtta mantık kullanılır ancak genellikle bir ölçüde doğal dilden de yararlanılır ve dolayısıyla bir parça belirsizlik içerir. Gerçekten de matematikte yazılan tanıtların büyük çoğunluğu informel mantığın uygulaması olarak kabul edilebilir. Tamamıyla formel tanıtların ele alındığı tanıtlama teorisi bağlamında, bu tip tamamıyle formel olmayan tanıtlamalara "sosyal tanıtlama" denir. Bu ayrım, günümüz ve geçmiş matematiksel uygulamaların, matematikte yarı görgücülüğün ve matematik folklorünün yoğun olarak incelenmesine yol açmıştır. Matematik felsefesi ise dilin ve mantığın tanıtlardaki rolü ve "dil olarak matematik" ile ilgilidir.

Kişinin formalizme olan yaklaşımından bağımsız olarak, doğru olduğu tanıtlanan sonuca teorem denir. Bu teorem, tamamıyla formel olan bir tanıtta son satırda yer alır ve tanıtın tümü, bu teoremin aksiyomlardan nasıl türetildiğini gösterir. Bir teorem tanıtlandıktan sonra başka önermeleri tanıtlamada kullanılabilir. Matematiğin temelleri adı verilen önermeler tanıtlanamayan ya da tanıtlanması gerekmeyen önermelerdir. Bunlar bir zamanlar matematik felsefecilerinin başlıca uğraşı alanıydı. Günümüzde ilgi odağı daha çok matematiksel uygulamalara, yani kabul edilebilir matematiksel tekniklere kaymıştır.

Bazı kabul görmüş tanıtlama teknikleri:

  • Doğrudan tanıtlama: Sonucun, aksiyomlar, tanımlar ve daha önceki savların mantıksal olarak birleştirilmesiyle elde edildiği yöntem.
  • Tümevarımla tanıtlama: Temel bir durumun tanıtlandığı ve bir tümevarım kuralı kulanılarak çok sayıda (sıkça sonsuz olan) başka durumların tanıtlandığı yöntem.
  • Olmayana ergi tanıtı (Reductio ad absurdum olarak da bilinir): Bir özelliğin doğru olması durumunda mantıksal bir çelişkinin doğacağı dolayısıyla özelliğin yanlış olduğunun gösterildiği yöntem.
  • Oluşturarak tanıtlama: İstenen özelliğe sahip somut bir örnek oluşturularak istenen özellikte bir nesnenin var olduğunun gösterildiği yöntem.
  • Tüketerek tanıtlama: Tanıtlanacak önermenin sonlu sayıda duruma bölünerek her birinin ayrı ayrı tanıtlandığı yöntem.
  • Köşegen yöntemiyle tanıtlama: Köşegen yöntemiyle tanıtlama Georg Cantor tarafından özel önermeleri tanıtlamak için geliştirilmiştir. İlk olarak, rasyonel sayıların sayılabilir ve gerçel sayıların sayılamaz olduğunu göstermek için kullanmıştır.
  • Çekmece ilkesi: İlk olarak Alman matematikçi Peter Gustav Lejeune Dirichlet tarafından ortaya konulan genel bir eşleştirme ilkesidir. Sayısı belli olan bir nesneler topluluğu nesne sayısından daha az sayıda çekmeceye yerleştirildiğinde, çekmecelerden en az birinde birden fazla nesnenin var olmak zorunda olduğunu ifade eder.

Olasılıkçı tanıtlama, olasılık teorisi yardımıyla istenen özellikte bir örneğin var olduğunun gösterildiği bir tanıtlama olarak anlaşılmalıdır, yani bir teoremin doğru "olabileceği" şeklinde değil. Bu ikinci türdeki uslamlamalara 'usayatkınlık tanıtı' denebilir; Collatz sanısı örneğinde bunun gerçek bir tanıtlamadan ne kadar uzak olduğu aşikardır. Olasılıkçı tanıtlama -oluşturarak tanıtlama dışında- varlık teoremlerini tanıtlamanın birçok yönteminden biridir.

Örneğin "f(X)'i sağlayan en az bir X var" önermesini tanıtlamaya çalışıyorsanız, bir varlık ya da oluşturmacı olmayan tanıt f(X)'i sağlayan bir X olduğunu tanıtlar fakat bu X'in nasıl elde edileceğini göstermez. Buna karşın oluşturmacı bir kanıt X'in nasıl elde edildiğini de gösterir.

Doğru olduğu düşünülen fakat henüz tanıtlanmayan bir önerme sanı (konjektür) olarak bilinir.

Bazı durumlarda, belirli bir önermenin verili bir aksiyomlar kümesinden tanıtlanamayacağı tanıtlanabilir; bkz. örneğin süreklilik hipotezi. Aksiyom sistemlerinin çoğunda, ne tanıtlanabilen ne de tanıtlanamayan önermeler bulunur (bkz. Gödel'in eksiklik kuramı).

  • Tanıtlama teorisi
  • Modeller kuramı
  • Otomatik teorem tanıtlama
  • Geçersiz tanıt
  • Oluşturmacı olmayan tanıt
  • Matematiksel tanıtlar listesi

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Matematik felsefesi</span>

Matematik felsefesi, matematiğin varlıksal, bilgisel ve yöntemsel sorunlarını inceleyen, matematiğin temelleriyle ilgili ana kavramları irdeleyen bir felsefe dalıdır.

Matematik felsefesinde, sezgicilik ya da yeni sezgicilik akımı, matematiğe insanların oluşturucu etkinliği olarak bakan bir yaklaşımdır.

Matematiğin temelleri olarak bilinen matematik dalı matematiğin tümü için geçerli olan en temel kavramları ve mantıksal yapıları inceler. Sayı, küme, fonksiyon, matematiksel tanıt, matematiksel tanım, matematiksel aksiyom, algoritma gibi kavramlar Matematiksel mantık, Aksiyomatik Küme Teorisi, Tanıtlama Teorisi, Model Teorisi, Hesaplama teorisi, Kategori Teorisi gibi yine matematiğim temelleri olarak anılan alanlarda incelenir. Bununla birlikte matematiğin temellerinin araştırılması matematik felsefesinin ana konularından biridir. Bu daldaki can alıcı soru matematiksel önermelerin hangi nihai esaslara göre "doğru" ya da "gerçek" kabul edilebileceğidir.

Modeller kuramı, matematiksel konseptleri küme kuramı temelinde inceleyen ya da başka bir deyişle matematiksel sistemlerin dayandığı modelleri araştıran matematik dalıdır. Modeller kuramı, 'dış dünyada' matematiksel nesnelerin var olduğunu varsayar ve nesneler, nesneler arasında bazı işlemler ya da bağıntılar ve bir aksiyomlar kümesi verildiğinde, nelerin nasıl tanıtlanabileceğine ilişkin sorular sorar.

Matematikte doğrudan tanıtlama, verilen bir önermenin var olan matematiksel teoremlerden yararlanarak doğru olduğunu gösterme işlemidir.

<span class="mw-page-title-main">Matematiksel tümevarım</span>

Matematiksel tümevarım bir önermenin, genellikle tüm doğal sayılar için ya da bazen sonsuz bir sıranın tüm elemanları için, doğru olduğunu göstermek üzere kullanılan bir matematiksel kanıtlama yöntemidir. Matematiksel mantık ve bilgisayar bilimlerinde kullanılan daha genel bir tanıtlama biçimi değerlendirilebilen (hesaplanabilen) ifadelerin denk olduğunu gösterir. Buna yapısal tümevarım denir.

İyi-sıralılık ilkesi, küme kuramının bir önermesidir. Her küme iyi sıralı bir küme yapılabilir. Bu teorem sonluötesi tümevarımın her kümede uygulanabilmesini sağlar. İyi sıralılık ilkesi seçim aksiyomuna denktir.

Eksiklik Teoremi, Kurt Gödel'in 1931 yılında doktorasında yer verdiği "Principia Mathematica Gibi Dizgelerin Biçimsel Olarak Karar Verilemeyen Önermeleri Üzerine" başlıklı makalesinde 4. önerme olarak geçer. Sezgisel olarak matematikte belitlere (aksiyom) dayanan her sistemin tutarlı olması dahilinde eksik olması gerektiğini bildirir.

Matematiksel mantık, biçimsel mantığın matematiğe uygulanmasıyla ilgilenen bir matematik dalıdır. Metamatematik, matematiğin temelleri ve kuramsal bilgisayar bilimi alanlarıyla yakınlık gösterir. Matematiksel mantığın temel konuları biçimsel sistemlerin ifade gücünün ve biçimsel ispat sistemlerinin tümdengelim gücünün belirlenmesidir.

<span class="mw-page-title-main">Öklid geometrisi</span> Öklide atfedilen matematiksel-geometrik sistem

Öklid geometrisi, İskenderiyeli Yunan matematikçi Öklid’e atfedilen matematiksel bir sistemdir ve onun Elemanlar adlı geometri üzerine ders kitabında tarif edilmektedir. Öklid'in yöntemi, sezgisel olarak çekici küçük bir aksiyom seti varsaymaktan ve bu aksiyomlara dayanarak birçok başka önermeyi (teoremleri) çıkarmaktan ibarettir. Öklid'in sonuçlarının çoğu daha önceki matematikçiler tarafından ifade edilmiş olsa da, Öklid, bu önermelerin kapsamlı bir tümdengelimli ve mantıksal sisteme nasıl uyabileceğini gösteren ilk kişi oldu. Elemanlar, ilk aksiyomatik sistem ve resmi ispatın ilk örnekleri olarak ortaokulda (lise) hala öğretilen düzlem geometrisi ile başlar. Üç boyutlu katı geometrisi ile devam ediyor. Elemanlar’ın çoğu, geometrik dilde açıklanan, şimdi cebir ve sayı teorisi olarak adlandırılan şeyin sonuçlarını belirtir.

Tüketerek tanıtlama veya kaba kuvvet yöntemi ya da durum çözümlemesi olarak bilinen yöntem, tanıtlanacak önermenin sonlu sayıda duruma bölünerek her durumun ayrı ayrı tanıtlandığı bir matematiksel tanıt yoludur. Tüketerek tanıtlama iki aşamada gerçekleştirilir:

Matematikte oluşturarak tanıtlama istenen özelliğe sahip somut bir örnek oluşturularak ya da böyle bir nesneyi oluşturma yöntemi verilerek, istenen özellikte bir matematiksel nesnenin var olduğunun tanıtlandığı bir yöntemdir. Bu yöntem, belirli özelliklere sahip olan matematiksel bir nesnenin var olduğunu tanıtlayan fakat bu nesnenin bir örneğini oluşturmak için yol göstermeyen oluşturmacı olmayan tanıtlama yöntemine karşıttır.

Tanıtlama teorisi matematiksel mantığın bir alt dalıdır ve tanıtları formel matematiksel nesneler olarak ele alarak matematiksel tekniklerle analiz edilmelerine olanak sağlar. Tanıtlar genelde tümevarımsal olarak tanımlanmış veri yapıları, örneğin listeler ve ağaçlar şeklinde gösterilir. Bu veri yapıları, esas alınan mantık sisteminin aksiyomlarına ve çıkarım kurallarına göre oluşturulur. Tanıtlama teorisinin doğası sözdizimseldir. Buna karşın model teorisinin doğası anlambilimseldir.

Tarih boyunca matematiğin konu çeşitliliği ve derinliği artmaktadır, matematiği kavrama, birçok konuyu matematiğin daha genel alanlarına göre sınıflandırma ve düzenleme için bir sistem gerektirir. Bir dizi farklı sınıflandırma şeması ortaya çıkmıştır ve bazı benzerlikleri paylaşsalar da, kısmen hizmet ettikleri farklı amaçlara bağlı olarak farklılıkları vardır. Ek olarak, matematik geliştirilmeye devam ettikçe, bu sınıflandırma şemaları da yeni oluşturulan alanları veya farklı alanlar arasında yeni keşfedilen bağlantıları dikkate alacak şekilde değişmelidir. Farklı alanlar arasındaki sınırı aşan, genellikle en aktif olan bazı konuların sınıflandırılması daha zor hale gelir.

<span class="mw-page-title-main">Set teorisi</span>

Makalenin kısa özeti; farklı nesnelerin koleksiyonları olarak kümeler hakkında konuşur, matematikte birçok kullanımları olduğunu ve matematiğin set teorisinde kodlanabileceğini ve matematiğin çoğunu yapmak için yeterince küme teorisinin aksiyomatize edilebileceğini belirtir. Konunun aksiyomları veya amaçlanan yorumu ile tanımlanıp tanımlanmadığı konusunda tarafsız kalır. Antinomilerden bahsedilirse, aksiyomatizasyonun çözüm olduğunu iddia etmemeli, ancak bazılarının onları aksiyomatizasyon ile çözüldüğünü, diğerleri de kümülatif hiyerarşi ile değerlendirdiğini belirtmelidir. -> Venn diyagramı, ikisinin set matematik Kümeleri. Küme teorisi, gayri resmi olarak nesne koleksiyonları olan matematiksel mantığın ' kümeleri üzerinde çalışan bir dalıdır. Herhangi bir nesne türü bir kümede toplanabilse de, küme teorisi çoğunlukla matematikle ilgili nesnelere uygulanır. Küme teorisinin dili neredeyse tüm matematiksel nesne leri tanımlamak için kullanılabilir.

Matematik konularının listesi, matematik ile ilgili çeşitli konuları kapsar. Bu listelerden bazıları yüzlerce makaleye bağlantı içerir; bazıları sadece birkaç tane ile bağlantılıdır. Bu makale, aynı içeriği, göz atmaya daha uygun bir şekilde organize halde bir araya getirmektedir. Listeler, temel ve ileri matematik, metodoloji, matematiksel ifadeler, integraller, genel kavramlar, matematiksel nesneler ve referans tablolarının özelliklerini kapsar. Ayrıca insanların adını taşıyan denklemleri, matematiksel toplulukları, matematikçileri, matematik dergilerini ve meta listeleri de kapsar.

Matematikte tanıt, ilgilenilen bir önermenin, belirli aksiyomlar esas alınarak, doğru olduğunu gösterme yöntemidir. ... Matematiksel tanıtta mantık kullanılır ancak genellikle bir ölçüde doğal dilden de yararlanılır ve dolayısıyla bir parça belirsizlik içerir.

Otomatik akıl yürütme, bilgisayar biliminin ve akıl yürütmenin farklı yönlerini anlamaya çalışan bir alandır. Otomatik akıl yürütme çalışması, bilgisayarların tamamen veya neredeyse tamamen otomatik olarak akıl yürütmesine izin veren bilgisayar programlarının üretilmesine yardımcı olur. Otomatik akıl yürütme, yapay zekanın bir alt alanı olarak görülse de, teorik bilgisayar bilimi ve felsefesi ile de bağlantıları vardır.

Matematikte, Alman matematikçi David Hilbert tarafından 1920'lerin başında formüle edilen Hilbert'in programı, matematiğin temellerini açıklığa kavuşturmaya yönelik ilk girişimlerin tutarsız olduğu bulunduğunda, matematiğin temel krizine önerilen bir çözümdü. Çözüm olarak Hilbert, mevcut tüm teorileri sonlu, sonlu bir aksiyom dizisine dayandırmayı ve bu aksiyomların tutarlı olduğuna dair bir kanıt sunmayı önerdi. Hilbert, gerçek analiz gibi daha karmaşık sistemlerin tutarlılığının daha basit sistemleri kullanarak kanıtlayabileceğini gösterdi.Sonuçta matematiğin tamamının tutarlılığı temel aritmetiğe indirgenebilir.