İçeriğe atla

Matematiksel fizik

Matematiksel fizik, matematik ve fizik arasındaki alakayla ilgilinen bilimsel disiplindir. Matematiksel fiziğin neyi içerip içermediği ile ilgili tam bir mutabakat yoktur. Ancak Journal of Mathematical Physics konuyla ilgili bir tanım yapar: Matematiğin fiziksel sorunlara uygulanması ve fiziksel kuramlar için matematiksel yöntemlerin uygunluğunun geliştirilmesi.

Kapsam

Orada matematiksel fiziğin birkaç farklı dalları vardır ve bu kabaca belirli tarihsel dönemlere karşılık gelmektedir.

Klasik mekaniğin geometrik olarak gelişmiş formülasyonları

Newton mekaniğinin, Lagrange mekaniği ve Hamilton mekaniği bile kısıtlamalar varlığında titiz soyut ve yeniden formülasyonunun geliştirilmesidir. Her iki formülasyon analitik mekaniği içinde gömülüdür. En temel formülasyon belirtilen dinamik evrimi sırasında,içinde simetri ve korunmuş miktarda bu kavramının derin etkileşimi keşfetmek için Noether teoremidir. Bu yaklaşımlar ve fikirler, aslında, istatistiksel mekanik, sürekli ortam mekaniği, klasik alan teorisi ve kuantum alan teorisi gibi fiziğin diğer alanlarında genişletilmiştir. Ayrıca diferansiyel geometri (örneğin vektör demetleri ve çeşitli kavramlar simplektik geometri teorisi) için birkaç örnek ve temel fikirler sağladı.

Kısmi diferansiyel denklemler

Kısmi diferansiyel denklem teorisinin (Varyasyonlar hesabı, Fourier analizi, potansiyel teorisi ve vektör analizi ile ilgili alanlarda) matematiksel fizik ile ilişkilidir. Euler ve Lagrange |Bu on sekizinci yüzyılın ikinci yarısından 1930'lara kadar (örneğin; [D' Alembert] Jean le Rond d' Alembert, tarafından yoğun şekilde geliştirilmiştir). Bu gelişmelerin fiziksel uygulamaları hidrodinamik, gök mekaniği, sürekli ortam mekaniği, elastisite teorisi , akustik, termodinamik , elektrik , manyetizma ve aerodinamik içerir.

Kuantum teorisi

atom spektrumları teorisi (ve daha sonra, kuantum mekaniği) ve lineer cebir matematiksel alanları ile neredeyse eş zamanlı olarak geliştirilen, operatörleri'nin spektral teorisi ve daha geniş operatör cebiri, fonksiyonel analiz . göreli olmayan kuantum mekaniği'nin Schrödinger operatörlerini içerir ve atom ve molekül fiziği ile bağlantıları vardır. Kuantum bilgi teorisi başka bir yandaldır.

Görelilik ve Kuantum Göreli Teorileri

özel ve genel görelilik teorileri oldukça farklı bir tür Matematik gerektirir. kuantum alan teorisi ve diferansiyel geometri 'nde grup teorisi önemli bir rol oynamıştır Bu, ancak topoloji ve fonksiyonel analiz, yavaş yavaş desteklenen kozmolojik ve matematiksel tanımı hem de kuantum alan teorisi olaylarıdır.

İstatistiksel mekanik

İstatistiksel mekanik teorisi faz geçişleri içeren ayrı bir alan oluşturur. Bu Hamilton mekaniği (ya da kuantum sürümü) dayanır ve yakından ilişkili olduğu daha matematiksel ergodic teorisi ve bazı bölgelerinde olasılık teorisi . Kombinatorik ve fizik, özellikle istatistiksel fizik arasındaki etkileşimleri vardır artmaktadır.

Dış bağlantılar

İngiliz Edebiyatı

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

Matematiksel analiz, hesaplamanın esas olduğu matematiğin en önemli kolu. Limit kavramı üzerine kurulmuştur. Eğri, yüzey ve fizik problemlerini bünyesine alarak gelişti. Bu tür konular, özel veya farklı değer kümeleriyle meşgul olan cebir ve aritmetiğin dışındaki problemlerdir. Bununla beraber, sonsuz kümelerin limit değerlerini kural haline getirme işlemlerini ihtiva ederler.

<span class="mw-page-title-main">Teorik fizik</span> fizik biliminin bir branşı

Teorik fizik, fiziğin matematiksel modellemeler ve fiziksel nesnelerin soyutlandırılmaları çalışmaları ve doğa olaylarını açıklayan, gerçekselleştiren ve tahmin yürüten fizik dalıdır. Bu deneysel fiziğin zıttıdır ki deneysel fizik araçlarla bu olayları soruşturur.

<span class="mw-page-title-main">Diferansiyel geometri</span>

Diferansiyel geometri türevin tanımlı olduğu Riemann manifoldlarının özellikleriyle uğraşan matematiğin bir alt disiplinidir. Başka bir deyişle, bu manifoldlar üzerindeki metrik kavramlarla uğraşır. Eğrilik, eğriler için burulma ve yüzeyler için değişik eğrilikler, araştırılan özellikler arasındadır.

<span class="mw-page-title-main">Alan (fizik)</span>

Alan, fizik kuramlarında kullanılan, matematikteki cebirsel alanın tüm özelliklerini taşıyan terim. Genellikle bu etki 100 nanometre ve daha küçük skalalarda etkili olur. Bu etki nanoteknolojiyle aynı ölçeğe denk gelir. Bir alan mekan ve zaman içinde her bir nokta için bir değeri olan bir fiziksel miktardır. Örneğin, hava durumu, rüzgâr hızı uzayda her nokta için bir vektör atayarak tarif edilmektedir. Her bir vektör bu noktada hava hareketinin hızını ve yönünü temsil eder.

<span class="mw-page-title-main">William Hamilton (matematikçi)</span>

Sir William Rowan Hamilton MRIA İrlandalı bir matematikçi, Trinity College Dublin'de Andrews Astronomi Profesörü ve İrlanda Kraliyet Gökbilimcisiydi. Fizik için hem saf matematik hem de matematik alanında çalıştı. Optik, klasik mekanik ve cebire önemli katkılarda bulundu. Hamilton bir fizikçi olmasa da –kendisini saf bir matematikçi olarak görüyordu– çalışması fizik için, özellikle de Newton mekaniğini yeniden formüle etmesi, şimdi Hamilton mekaniği olarak adlandırılan, büyük önem taşıyordu. Bu çalışma, elektromanyetizma gibi klasik alan teorilerinin modern çalışmasının ve kuantum mekaniğinin geliştirilmesinin merkezinde olduğunu kanıtladı. Saf matematikte, en iyi kuaterniyonların mucidi olarak bilinir.

<span class="mw-page-title-main">Vektör hesabı</span>

Vektör hesabı, iki veya daha çok boyutlu iç çarpım uzayındaki vektörlerin çok değişkenli gerçel analiziyle uğraşan bir matematik dalıdır. Fizik ve mühendislikte epey faydalı olan formül takımlarından ve problem çözme tekniklerini kapsamaktadır. Vektör hesabı köklerini kuaterniyon analizinden almaktadır ve Amerikan mühendis ve bilim insanı J. Willard Gibbs ve İngiliz mühendis Oliver Heaviside tarafından formüle edilmiştir.

Matematiğin vektör uzaylarıyla ve bu uzayların üzerinde tanımlı operatörlerle uğraşan bir alt dalı. Kökleri fonksiyon uzayları kuramının geliştirilmesine; hatta diferansiyel ve integral denklemlerinin çalışılmasına kadar gitmektedir. Özelde mesela Fourier dönüşümü gibi fonksiyon dönüşümlerinin çalışılmasında da kullanılmıştır. Fonksiyonel kelimesinin ilk kullanımı varyasyonlar hesabına kadar takip edilebilir. Ancak, genel anlamda kullanımı İtalyan matematikçi ve fizikçi Vito Volterra'ya atfedilmektedir. Yine de temeli büyük ölçüde Stefan Banach ve çevresindeki Polonyalı matematikçiler tarafından atılmış ve geliştirilmiştir. Çağdaş anlamda, fonksiyonel analiz bir topolojiye sahip vektör uzaylarının çalışılmasında, özellikle sonsuz boyutlu uzaylarda, gözükmektedir. Tanımdan yola çıkılarak fonksiyon analizinin sonlu boyutlu uzaylar kuramını da içerdiği düşünülebilir; ancak bu uzayları bir topolojisi olmadan inceleyen alan doğrusal cebirdir. Fonksiyonel analizin önemli bir işlevlerinden biri de ölçü, integral ve olasılık kuramı gibi genel kuramları sonsuz boyutlu uzaylara yaymaktır ki bu işlevin özelde adı sonsuz boyutlu analizdir.

<span class="mw-page-title-main">Akademik disiplinler listesi</span> Vikimedya liste maddesi

Akademik disiplinlere genel bir bakış ve güncel bir rehber olarak aşağıda ana hatlar verilmiştir:

<span class="mw-page-title-main">Skaler (fizik)</span> tek boyutlu fiziksel miktar

Fizikte, bir skaler, vektörden farklı olarak, koordinat sisteminin döndürülmesi veya değiştirilmesi, herhangi bir Lorentz dönüşümü ya da uzay-zaman dönüşümü (görelilikte) sonucunda değişmeyen basit bir fiziksel niceliktir.

<span class="mw-page-title-main">Ayar teorisi</span> Fizikte bir teori

Ayar teorisi veya ayar kuramı, kuramsal fizikte temel etileşmeleri açıklar. Türkçede bazen yerelleştirilmiş bakışım kuramı olarak da geçer.

<span class="mw-page-title-main">Tensör</span> skaler, vektör, covector ve tensörlerin bazı kombinasyonlarında çok çizgili harita

Matematikte, tensör, çok boyutlu verinin simgelenebildiği geometrik bir nesnedir. Skaler denilen yönsüz nicel büyüklükler, vektör denilen yönlü büyüklükler ve matris denilen iki boyutlu nesneler birer tensördür. Tensör, tüm bu nesnelerin genelleştirilmiş halidir ve çok boyutlu veri kümeleri için kullanılır. Nesnenin kaç boyutla ifade edildiğine de tensörün derecesi denilir. Bir skalerin derecesi sıfır, bir vektörün bir, bir matrisin ise ikidir. Tensörler üç ve üzeri dereceye sahip olabilir.

En az eylem ilkesi diğer bi adıyla minimum eylem prensibi, mekanik sistemlerdeki eylem kavramına varyasyon prensipleri uygulandığında hareket denklemlerinin bulunması esasına dayanır. Görelilik teorisinde, göreli etkiler fiziksel olarak dahil oldukları için, klasik mekanik sistemlere göre farklı eylem fonksiyonları tanımlanmalıdır. Bu prensip, Newton, Lagrange ve Hamilton ve görelilik prensiplerini ve onlardan çıkartılan hareket denklemlerini türetmek için kullanılır. “En az” kavramı çözümlerde iki nokta arasındaki yollardan; çevre yollara göre değişimin en az olduğu yolu bulma problemi irdelendiği için kullanılır. Bu prensibin klasik mekanik ve elektromanyetik prensipleri kuantum mekaniğinin dolayısıyla da en az eylem ilkesinin sonuçlarına dayanır. En az eylem ilkesi ve varyasyon prensipleri, kuantum mekaniğini de geliştirmiş olan doğanın en kapsamlı temel davranış yasalarını içerir.

Tarih boyunca matematiğin konu çeşitliliği ve derinliği artmaktadır, matematiği kavrama, birçok konuyu matematiğin daha genel alanlarına göre sınıflandırma ve düzenleme için bir sistem gerektirir. Bir dizi farklı sınıflandırma şeması ortaya çıkmıştır ve bazı benzerlikleri paylaşsalar da, kısmen hizmet ettikleri farklı amaçlara bağlı olarak farklılıkları vardır. Ek olarak, matematik geliştirilmeye devam ettikçe, bu sınıflandırma şemaları da yeni oluşturulan alanları veya farklı alanlar arasında yeni keşfedilen bağlantıları dikkate alacak şekilde değişmelidir. Farklı alanlar arasındaki sınırı aşan, genellikle en aktif olan bazı konuların sınıflandırılması daha zor hale gelir.

<span class="mw-page-title-main">Boris Dubrovin</span> Rus matematikçi

Boris Anatolyeviç Dubrovin, Rus matematikçi, Fizik ve Matematik Bilimleri Doktorudur.

Bu liste, matematiğe kayda değer katkılarda bulunan veya matematikte başarı sağlayan kadınların eksik bir listesidir. Bunlar arasında matematiksel araştırma, matematik eğitimi, matematik tarihi ve felsefesi, kamusal sosyal yardım ve matematik yarışmaları gibi alanlar/konular kapsama alınmıştır.

Bu sayfa teoremlerin bir listesidir. Ayrıca bakınız:

Matematik, sayı, uzay, matematiksel yapı ve değişim gibi konuları araştıran bir çalışma alanıdır. Matematik ve bilim arasındaki ilişki hakkında daha fazla bilgi Matematik ve bilim bölümünde bulunabilir.

Matematik konularının listesi, matematik ile ilgili çeşitli konuları kapsar. Bu listelerden bazıları yüzlerce makaleye bağlantı içerir; bazıları sadece birkaç tane ile bağlantılıdır. Bu makale, aynı içeriği, göz atmaya daha uygun bir şekilde organize halde bir araya getirmektedir. Listeler, temel ve ileri matematik, metodoloji, matematiksel ifadeler, integraller, genel kavramlar, matematiksel nesneler ve referans tablolarının özelliklerini kapsar. Ayrıca insanların adını taşıyan denklemleri, matematiksel toplulukları, matematikçileri, matematik dergilerini ve meta listeleri de kapsar.

<span class="mw-page-title-main">Homolojik cebir</span>

Homolojik cebir, homolojiyi genel cebirsel ortamda inceleyen matematiğin bir dalıdır. Kökenleri, özellikle Henri Poincaré ve David Hilbert tarafından 19. yüzyılın sonlarında kombinatoryal topoloji ve soyut cebir araştırmalarına dayanan nispeten genç bir disiplindir.