Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.
Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.
Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.
Aritmetik; matematiğin sayılar arasındaki ilişkiler ile sayıların problem çözmede kullanımı ile ilgilenen dalı. Aritmetik kavramı ile genellikle sayılar teorisi, ölçme ve hesaplama kastedilir. Bununla birlikte bazı matematikçiler daha karmaşık çeşitli işlemleri de aritmetik başlığı altında değerlendirirler.
11, bir sayı. Sodyumun element numarasıdır.
Koordinat sistemi, geometride herhangi bir düzlemdeki (çokkatlıdaki) bir nokta veya başka bir geometrik elemanın konumunu tam olarak belirlemek için bir veya daha çok sayı ya da koordinat kullanılan bir sistemdir. Koordinatlar basit matematikteki reel sayılardan oluşur. Fakat soyut cebir gibi bazı alanlarda karmaşık sayılar veya elemanlardan oluşabilir. Koordinat sisteminin kullanılması, geometrik problemlerin sayısal problemlere ve tersine dönüştürülmesini sağlar. Bu analitik geometrinin temelidir.
Üs, bazen kuvvet, b taban, n üs veya kuvvet olmak üzere, bn olarak gösterilen ve "b üssü n", "b üzeri n" veya "b'nin n'inci kuvveti" olarak telaffuz edilen matematiksel işlem. Eğer n pozitif bir tam sayıysa, tabanın tekrarlanan çarpımına karşılık gelir:
Ortalama veya merkezsel konum ölçüleri, istatistik bilim dalında ve veri analizinde kullanılan bir veri dizisinin orta konumunu, tek bir sayı ile ifade eden betimsel istatistik ölçüsüdür. Günlük hayatta ortalama dendiğinde genellikle kast edilen aritmetik ortalama olmakla beraber bu ölçünün çok belirli bazı dezavantajları söz konusudur. Bu yüzden matematik ve istatistikte, bir anakütle veya örneklem veri dizisi değerlerini temsil eden tek bir orta değer veya beklenen değer, olarak medyan (ortanca), mod (tepedeğer), geometrik ortalama, harmonik ortalama vb adlari verilen birçok değişik merkezsel konum ölçüleri geliştirilmiş ve pratikte kullanılmaktadır.
Kayan noktalı sayılar gerçel sayıların bilgisayar ortamındaki gösterim şekillerinden biridir. Gerçek dünyada sayılar sonsuza kadar giderken, bilgisayar ortamında bilgisayar donanımının getirdiği sınırlamalardan dolayı bütün sayıların gösterilmesi mümkün değildir. Bununla birlikte gerçekte sonsuza kadar giden birtakım değerler bilgisayar ortamında ortamın kapasitesine bağlı olarak yaklaşık değerlerle temsil edilirler. Bu sınırlamaların etkisini en aza indiren, sayıların maksimum miktarda ve gerçeğe en yakın şekilde temsilini sağlayan sisteme "Kayan-Noktalı Sayılar" sistemi denir. Kayan-Noktalı sayılar sistemi, bir sayı ile 10'un herhangi bir kuvvetinin çarpımı şeklinde sıklıkla kullanılan bilimsel gösterime oldukça benzeyen bir notasyona sahiptir ve en sık kullanılan IEEE 754 standardına göre şekillendirilmiştir.
Sonsuz, eski Yunanca Lemniscate kelimesinden gelmektedir, çoğunlukla matematik ve fizikte herhangi bir sonu olmayan şeyleri ve sayıları tarif etmekte kullanılan soyut bir kavramdır.
Cebirde bir sayının karesi o sayının kendisiyle çarpılması sonucu elde edilen sayıdır. Karesi alınan x sayısı x² biçiminde yazılır.
Matematikte, birkaç fonksiyon ya da fonksiyon gruplarının kendi isimleri yeterli öneme layıktır. Bu makaleler fonksiyonları açıklamak için olan daha ayrıntılı olarak gösteren bir listedir. İstatistik dışı ve matematiksel fizik gelişmeleri sonucu özel fonksiyonlar büyük bir teori olmuştur. Modern bir, soyut incelik fonksiyon uzayıları geniş karşılaştırma görünümü, sonsuz-boyutlu ve 'isimsiz' fonksiyonlar içindeki ve simetri ya da ilişki harmonik analiz ve grup temsilileri gibi özellikler ile özel fonksiyonlar ile seçilmiştir.
Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.
−1, aritmetikte 1'in toplama işlemine göre tersini simgeleyen ve 1 eklendiğinde toplama işleminin etkisiz elemanı olan 0 sayısını veren tam sayıdır. Ayrıca en büyük negatif tam sayıdır.
Matematikte özdeşlik, bilinmeyenin her değeri için doğru olan açık eşitliklerdir.
Temel matematikte sayı doğrusu, kalın çizgiden oluşan ve her noktası ilgili bir reel sayıya karşılık gelen en temel koordinat sistemidir. Daha çok tamsayılardan oluşan özel işaretli noktalar, aralarında eşit mesafe olacak biçimde gösterilir. Aşağıdaki şekilde her ne kadar −9 ile 9 arasındaki sayılar gösterilse bile, doğruya tüm reel sayılar dahildir. Bu sayılar her iki yönde sonsuza kadar devam eder. Bu sayı doğrusu daha çok, basit toplama ve çıkarmayı, özellikle negatif sayıları öğretmeye yardımcı olmak için kullanılır.
Doğrusal cebirde, kare matris, satır ve sütun sayıları eşit olan bir matrisdir. n ye n lik bir matris, boyutu n olan bir kare matris olarak bilinir. Aynı boyuta sahip herhangi iki matriste, toplama ve çarpma işlemleri yapılabilir.
Matematikte işaret kavramı, sıfırdan farklı her bir reel sayının pozitif veya negatif olduğunu belirtir. Her ne kadar bazen işaretli sıfır kullanılsa bile, sıfırın kendisi işaretsizdir. Matematik ve fizikte kullanılan reel sayıların toplamaya göre tersini ifade etmek için işaret değiştirme işlemi yapılır.
İşaretli sıfır, önünde artı ve eksi işaretleri olan sıfırdır. Aritmetikte özel durumlar hariç 0 işaretsizdir. Bununla birlikte Bilişimdeki işaretli sayı temsilleri gibi bazı uygulamalarda, işaretli sıfır kullanılır. Burada pozitif sıfır ile negatif sıfır farklı sayıları ifade eder.
Matematikte Çin kalan teoremi, bir n tamsayısının birkaç tam sayıya bölümünden kalanlar biliniyorsa, n'in bu sayıların çarpımına bölümünden kalanın bulunabileceğini belirtir. Buradaki koşul, n'e bölümlerinden kalanlarını bildiğimiz sayıların birbirleriyle aralarında asal olmaları gerekliliğidir.