İçeriğe atla

Manyeto optik tuzak

Manyeto optik tuzak (kısaca MOT), soğuk, kapana kısılmış nötr örnekleri üretebilmek için lazer soğutma ve uzamsal olarak değişen bir manyetik alan kullanan bir cihazdır. Bir MOT'tan elde edilen sıcaklıklar, foton geri tepme sınırının iki veya üç katı olan atomik türe bağlı olarak birkaç mikrokelvin kadar düşük olabilir. Bununla birlikte, çözülmemiş aşırı ince yapıya sahip atomlar için, örneğin;bir MOT'nta elde edilen sıcaklık Doppler soğutimitinden den daha yüksek olacaktır.

MOT'un deneysel kurulumu.

MOT zayıf bir dört kutuplu uzamsal olarak değişen manyetik alan ve altı dairesel polarize kırmızı-detuned optik melas ışınının kesişiminden oluşturulur. Atomlar tuzağın merkezinde (bobinlerin ortasında) sıfır alanından uzaklaştıkça, uzaysal olarak değişen Zeeman Kaymasi rezonansa atomik bir geçiş getirir ve bu da tuzağın merkezinde atomları merkeze doğru geri iten bir saçılma kuvvetine yol açar. Bu nedenle bir MOT atomları yakalar ve bu kuvvet, atomların momentum aldıkları foton saçılımından hareketlerinin zıt yönünde "tekmeler" meydana geldiğinden, aynı zamanda atomları ortalama olarak yavaşlatır (yani soğutur), tekrarlanan absorpsiyon ve kendiliğinden emisyon döngüleri meydana getirir. Bu şekilde bir MOT, saniyede yüzlerce metre başlangıç hızları ile saniyede onlarca santimetreye kadar (yine atomik türlere bağlı olarak) atomları yakalayabilir ve soğutabilir. Yüklü parçacıklar bir Penning Tuzağı veya Paul Tuzağı kullanılarak elektrik ve manyetik alanların bir kombinasyonu olarak tutulabilse de, bu tuzaklar nötr atomlar için etkisizdir.

Bir MOT'un Teorik Açıklaması

Zayıf bir dört kutuplu manyetik alan oluşturmak için bir anti-Helmholtz konfigürasyonunda iki bobin kullanılır; burada bobinleri -ekseni boyunca ayrılmış olarak ele alacağız. -yönü boyunca iki bobinin ortasında yer alan sıfır alanının yakınında, alan gradyanı tekdüzedir ve alanın kendisi pozisyona göre doğrusal olarak değişir. Bu tartışma için, ve olan, zemin ve uyarılmış durumları olan bir atom düşünün; burada , toplam açısal momentum vektörünün büyüklüğüdür. Zeeman Etkisi nedeniyle, bu durumların her biri ile gösterilen ilişkili değerleriyle alt düzeylere bölünecektir (temel durum için Zeeman kaymasının alan tarafından sıfır olduğuna ve alt düzeylere bölünmeyeceğine dikkat edin). Bu, Zeeman kayması alan kuvvetiyle orantılı olduğundan ve bu konfigürasyonda alan kuvveti pozisyonda lineer olduğundan, uyarılmış durum alt seviyelerinin uzamsal olarak bağımlı enerji kaymaları ile sonuçlanır. Bir not olarak, Maxwell Denklemi alan gradyanının ve yönleri boyunca iki kat daha güçlü olduğunu ve dolayısıyla yönü boyuna iki kat daha güçlü olduğunu ima eder.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektron</span> Temel elektrik yüküne sahip atomaltı parçacık

Elektron, eksi bir temel elektrik yüküne sahip bir atomaltı parçacıktır. Lepton parçacık ailesinin ilk nesline aittir ve bileşenleri ya da bilinen bir alt yapıları olmadığından genellikle temel parçacıklar olarak düşünülürler. Kütleleri, protonların yaklaşık olarak 1/1836'sı kadardır. Kuantum mekaniği özellikleri arasında, indirgenmiş Planck sabiti (ħ) biriminde ifade edilen, yarım tam sayı değerinde içsel bir açısal momentum (spin) vardır. Fermiyon olmasından ötürü, Pauli dışarlama ilkesi gereğince iki elektron aynı kuantum durumunda bulunamaz. Temel parçacıkların tamamı gibi hem parçacık hem dalga özelliklerini gösterir ve bu sayede diğer parçacıklarla çarpışabilir ya da kırınabilirler.

<span class="mw-page-title-main">Dubniyum</span>

Keşif: 1970 - Birleşik Nükleer Araştırmalar Enstitüsü, yapay, radyoaktif. İsmini Moskova'nın kuzeyindeki Dubna kasabasından almıştır, çünkü element ilk olarak orada üretilebilmiştir. Doğada bulunamaz, yalnızca laboratuvar ortamında elde edilebilir.

Madde dalgaları veya de Broglie dalgaları, maddenin dalga-parçacık ikiliğini yansıtan kavramdır. Kuram 1924'te, Louis de Broglie tarafından doktora tezinde önerilmiştir. De Broglie denklemleri dalga boyunun parçacığın momentumuyla ters orantılı olduğunu gösterir ve ayrıca de Broglie dalga boyu diye isimlendirilir. Ayrıca madde dalgalarının tekrarsıklığı, de Broglie tarafından türetildiği gibi, parçacığın toplam enerjisi E'ye – kinetik enerjisinin ve potansiyel enerjisinin toplamı – doğru orantılıdır.

<span class="mw-page-title-main">Bose-Einstein yoğunlaşması</span>

Bose-Einstein yoğunlaşması (BEY), parçacıkları bozonlardan oluşan maddelerin en alt enerji seviyesinde yoğunlaştığı, kuantum etkilerinin gözlenebildiği maddenin bir halidir. Bozonik atomlar için, seyreltilmiş gaz halinde lazer soğutması aracılığıyla mutlak sıfır sıcaklığına doğru inilerek bu hale geçiş yani yoğunlaşma sağlanabilir. Atomların klasik gazlardan farklı olarak Maxwell-Boltzmann istatistiği yerine Bose-Einstein istatistiğine makroskobik olarak/büyük ölçekte uyması BEY'nin belirleyici özelliğidir.

Tennesin veya Ununseptiyum, periyodik tabloda atom numarası 117 ve sembolü Ts olan kimyasal elementtir.

<span class="mw-page-title-main">Wolfgang Ketterle</span>

Wolfgang Ketterle, Alman fizikçi. 2001 yılında Eric Allin Cornell ve Carl Wieman ile beraber Nobel Fizik Ödülü'nü kazanmıştır.

Dolanıklık, kuantum mekaniğine özgü bir olgudur. Kuantum fiziğine göre iki benzer parçacık birbiriyle eşzamanlılığa sahiptir. Bu parçacıklar ayrı yerlerde birbirinden eşzamanlı olarak etkilenirler. İki elektron parçası ışık yılına yakın uzaklıkta olsa dahi birbirlerini etkileyebilirler. Bu sayede birbirinden ışık yılına yakın bir uzaklıkta olan bir elektron kendi çevresi etrafında sağa dönerken diğer bir elektron parçası sola dönecektir.

<span class="mw-page-title-main">Rydberg atomu</span>

Rydberg atomu çok yüksek temel nicem sayılı bir veya iki elektrona sahip bir uyarılmış atomdur Bu atomlar elektrik ve manyetik alana abartılı tepkiler vermeyi de içinde barındıran, uzun bozunma devri ve yaklaşık elektron dalgafonksiyonları, bazı şartlar altında çekirdekler etrafındaki elektronların klasik yörüngeleri gibi kendilerine has birçok özelliğe sahiptir. Çekirdek elektronları dış elektronları çekirdeğin elektrik alanından kalkanlar, öyle ki belirli bir mesafeden hidrojen atomundaki bir elektronun tecrübe ettiği gibi elektrik potansiyeli belirleyicidir.

Süperakışkan Helyum-4, helyum elementi helyum-4 ün oluşturduğu bir süper akışkandır. Bir süperakışkan maddenin 0 viskoziteli bir akışkan gibi davrandığı durumudur. Normal bir sıvı gibi görünen madde her tür yüzeyde sürtünmesiz şekilde engellerin etrafından dolaşır ve kabının gözeneklerinden yalnızca kendi eylemsizliğine bağlı olarak akar.

Tetrakuark, parçacık fiziğinde, dört valans kuarktan oluşan ve varlığı tahmin edilmesine karşın henüz kanıtlanamamış egzotik mezondur. Prensipte, bir tetrakuark durumu kuantum renk dinamiği içinde yer alabilmektedir.

<span class="mw-page-title-main">Egzotik hadron</span>

Egzotik hadron, kuarklar ile gluonlardan meydana gelen, sıradan hadronların aksine iki ya da üç kuarktan fazlasını içeren atomaltı parçacıktır. Egzotik baryonlar, üç kuarka sahip sıradan baryonlardan; egzotik mezonlar ise birer kuark ve antikuarka sahip sıradan mezonlardan ayrılır. Teoride, renk yükü beyaz olduğu müddetçe bir hadronun kuark sayısında herhangi bir limit yoktur.

<span class="mw-page-title-main">J/psi mezonu</span>

J/psi mezonu veya psion bir atomaltı parçacık. Bir tane tılsım kuark ve bir de tılsım antikuarktan oluşan bir çeşni değiştiren yüksüz mezonudur. Bir tılsım kuark ve bir tılsım antikuarkın bağlı hali ile oluşan mezonlar "karmoniyum" olarak anılır. En yaygın karmoniyum, düşük değişim kütlesi, 3.0969 GeV/c23,0969 GeV/c2 yani ηc̅ ' nin (2.9836 GeV/c22,9836 GeV/c2) biraz üzerinde, sebebi ile J/psi mezondur. Bu mezon ortalama 7.2×10−21 s7,2×10-21 s ömre sahiptir.Fakat bu süre tahmin edilen 1000 kat daha uzundur.

Ters beta bozunması, genelde IBD olarak kısaltılır, elektron antinötrinosunun bir protonu saçması ile pozitron ve nötron oluşmasını içeren nükleer reaksiyon. Bu bozunma nötrino detektörlerinde elektron antinötrino tespiti için yaygın olarak kullanılır.

Hadronlaşma veya hadronizasyon, hadronların kuarklar ve gluonların dışında oluşma işlemidir. Bu olay, kuarklar ve gluanların oluştuğu bir parçacık çarpıştırıcıda yüksek enerjili bir çarpışma ile olur. Renk hapsi nedeni ile kuarklar ve hadronlar kendi başlarına var olamazlar. Standart Model'e göre, bunlar vakumdan spontane şekilde oluşmuş kuarklar ve antikuarklar ile birleşerek hadronları oluştururlar. Hadronlaşmanın kuantum renk dinamikleri henüz tam olarak anlaşılamamıştır ama birkaç olgu çalışmasında modellenip parametrize edilmiştir. Bu çalışmalardan biri Lund ip modelidir. Aynı zamanda uzun menzil kuantum renk dinamiği yaklaşım şemaları da mevcuttur.

Ksi baryonları, birinci çeşni nesillerinden bir kuarka, daha yüksek çeşnili nesillerinden ise iki kuarka sahip, Ξ sembolüyle gösterilen hadron parçacığı ailesidir. Bu nedenlerden ötürü bu tip parçacıklar birer baryondur, toplam izospinleri 1/2'dir ve nötr olabildikleri gibi +2, +1 ya da -1 temel yüke sahip olabilirler. Yüklü Ksi baryonları ilk kez 1952'de, Manchester grubu tarafından gerçekleştirilen kozmik ışın deneyleri sırasında gözlemlenmiştir. Nötr Ksi baryonlarının ilk kez gözlemlenmesi ise 1959'da, Lawrence Berkeley Ulusal Laboratuvarı'nda gerçekleştirildi. Kararsız durumları, bozunma zinciri sonucunda daha hafif parçacıklara bozunmaları sebebiyle geçmişte çağlayan parçacıklar olarak da anılmaktaydılar.

Kuantum elektrodinamiğinde bir parçacığın anormal manyetik momenti, döngülerle beraber Feynman diyagramları ile ifade edilen kuantum mekaniğinin, o parçanın manyetik momentine etkilerinin bir katkısıdır.

<span class="mw-page-title-main">Negatif indisli metamalzeme</span>

Negatif indisli metamalzemeler (NIM), kırılma indisi belli frekans aralıklarında negatif değer alan metamalzemelerdir. Kırılma indisinin negatif olması bu yapay malzemelerde "negatif kırılma" gibi doğal malzemelerde bulunmayan özelliklere sahip olmasını sağlamaktadır. Bu malzemelerin yapay tepkileri dolayısıyla elektrodinamikteki standart sağ el kuralı kuralı bu ortamlarda tersine döner; bu nedenle negatif indisli metamalzemeler aynı zamanda "solak malzemeler" olarak bilinmektedir.

<span class="mw-page-title-main">Sıfır alan NMR</span> Sıfır ve ultra düşük manyetik alanlarda gerçekleştirilen nükleer manyetik rezonans spektrokopisi yöntemi

Sıfır ve ultra düşük alan NMR, NMR aktif çekirdekleri içeren kimyasalların nükleer manyetik rezonans spektrumlarının, manyetik alan etkisinin dikkatlice ortadan kaldırıldığı bir ortamda elde edilmesidir. ZULF NMR deneyleri, genellikle, pasif veya aktif şekilde manyetik kalkanlama yapılarak Dünya’nın manyetik alanının azaltılması ile gerçekleştirilir. Bu, süper iletken mıknatısların sağladığı yüksek manyetik alanda uygulanan yaygın NMR deneylerinin tersine bir yaklaşımdır. ZULF deneylerinde baskın etkileşim nükleer spin-spin eşleşmeleridir ve spinler ile dış manyetik alan arasındaki eşleşmeler bunun pertubasyonuna, yani sapmasına neden olur. Bu rejimde çalışmanın birçok avantajı bulunmaktadır: Manyetik alınganlık kaynaklı çizgi genişlemesi engellenir yani heterojen ortamdaki numunelerin spektrumlarındaki homojen olmamaktan kaynaklanan çizgi genişlemesi azaltır. Bir diğer avantaj ise düşük frekanslı sinyallerin, artan yüzey katmanı etkisi nedeniyle metaller gibi iletken malzemelerden kolayca geçebilmesidir. Bu durum numune kaplarının genellikle cam, kuvars veya seramikten yapıldığı yüksek alan NMR için geçerli değildir.

Fizikte, Feshbach rezonansı iki yavaş atomun çarpışması üzerine, kısa ömürlü istikrarsız bir bileşik oluşturarak geçici olarak birbirine yapıştıklarında ortaya çıkabilir. Bu, en az bir iç serbestlik derecesi ile reaksiyon koordinatları arasındaki ayrışmaya yol açan bağ(lar)ın yok olması durumunda bağlı bir durumun elde edildiği çok cisimli sistemlerin bir özelliğidir. Bir bağlı durum oluşmadığında ortaya çıkan ters durum ise şekil rezonansıdır. Adını MIT'de fizikçi olan Herman Feshbach'tan almıştır.

Manyetik hidrodinamikte, manyetik Reynolds sayısı (Rm) bir boyutsuz nicelik olup, bir iletken ortamın hareketiyle bir manyetik alanın adveksiyon veya indüksiyonunun, manyetik difüzyona göreceli etkilerini tahmin eder. Bu sayı, akışkanlar mekaniğindeki Reynolds sayısının manyetik bir benzeridir ve genellikle şu şekilde tanımlanır: