İçeriğe atla

Manyetik akı kuantumu

2010 CODATA değerleri Birimler
Φ02,067833758(46)×10-15Wb
KJ483597,870(11)×109[1]Hz/V
KJ–90483597,9×109Hz/V
Bazı eşyükselti eğrisi veya döngü iplik sembolü Φ tarafından temsil edilen manyetik akı kuantumu, döngü alanı S ve manyetik endüktans B olarak tanımlanır;

Φ = B · S.

 Hem B ve hem S keyfi olabilir. Ancak tek bir süper iletken döngüsü veya bir delik varsa, bu bir delik / döngü parçacığının manyetik akı parçacığı olduğunu ortaya çıkmıştır. Tek bir manyetik akı kuantumu;
Φ0 = h/(2e) ≈ 2,067833758(46)×10-15 Wb[2] temel fiziksel sabitinin bir kombinasyonudur: Planck sabiti h, elektron yükü e dir. Onun değeri herhangi bir süper iletken için aynıdır. Akı ölçüm olgusu 1961 yılında deneysel olarak R. Doll, M. Näbauer,[3] B. S. Deaver ve W. M. Fairbank[4] tarafından bağımsız olarak keşfedildi. Manyetik akı ölçümü Küçük Parklar etkisiyle çok yakından ilgilidir, ama daha önce Fritz London tarafından 1948 yılında tahmin edilerek fenomenolojik bir model olarak kullanılmıştır.

Akı kuantum tersine, 1/Φ0, Josephson sabiti denir ve KJ gösterilir. Josephson etkisi ölçüsü, radyasyon frekansına bir Josephson birleşim noktası arasındaki potansiyel farkla ile ilgili sabittir. Josephson etkisi çok yaygın olarak kullanılan bir standart sağlamak için potansiyel farkı yüksek hassasiyetli ölçümler (1990 yılından beri) yapılır, bu sabit ile ilgili olan, "geleneksel" Josephson değeri KJ–90 ile ifade edilir.

Giriş

Bu süper-iletken özellikleri karmaşık kuantum mekaniksel dalga fonksiyonu Ψ (r,t) süper iletken düzen parametresi tarafından açıklanmıştır. Herhangi bir karmaşık Ψ fonksiyonu, Ψ = Ψ0eiθ olarak yazılabilir. Burada Ψ0 genlik ve θ faz dır, 2πn tarafından faz θ değişen ve buna bağlı değişen Ψ'nin herhangi bir fiziksel özelliğinde değişme olmayacağı açıktır. Ancak, süper iletken önemsiz olmayan topoloji, örneğin süper iletken ile delik veya süper iletken döngü/silindirinin fazı θ olabilir sürekli değişim bazı değeri θ0 değeri θ0 + 2πn olarak bir gider çapında delik/döngü ve aynı başlangıç noktasıdır. Eğer bu doğruysa, o zaman tek bir delik / döngü içinde sıkışan n manyetik akı kuantumları vardır.

Meissner etkisi nedeniyle süper iletken içinde manyetik indüksiyon B sıfırdır. Daha doğrusu manyetik alan H küçük bir mesafe ‘London’ olarak tanımlanan manyetik alan penetrasyon derinliği üzerinde bir süper iletken (belirtilen λL ve genellikle 100 nm indirecektir) içine nüfuz eder. Tarama akımları da yüzeye yakın bu λL-katmana, mükemmel bir şekilde uygulanan süper iletken H alanını dengeler, böylece süper iletken içinde B = 0 sonucu içinde mıknatıslanma M akışı oluşur. Önemli donmuş manyetik akı bir döngü/delik (artı λL-kendi Katman) her zaman kullanışlı olacaktır. Bununla birlikte, akı kuantum değeri yalnızca Φ0 eşittir.

Yol/delik yukarıda açıklanan tarama akımları olmadan süper iletken bölgede bırakılır ve böylece yörünge etrafın da yani yüzeyden birkaç λL. seçilebilir. Bu durum tatmin edilemeyen geometrisi vardır örneğin çok ince (≤ λL ) süper-iletken tel veya benzer bir duvar kalınlığına sahip silindir yapılmış bir döngü. Bu durumda, akı kuantum Φ0 farklı vardır.

Ayrık bir akı SQUİD arkasındaki ana fikir, bunun mümkün olan en hassas Manyetometre biri olmasıdır.

Akı niceleme de tip II süper iletkenler de fizik önemli rolü oynar. Böyle bir süper iletken (şimdi herhangi bir delik olmadan) gücünde bir manyetik alana yerleştirildiğinde, ilk kritik alan ve ikinci kritik alan Hc1 Hc2 arasında, kısmen Abrikosov girdap formu süper iletken alanı içine nüfuz eder. The Abrikosov girdap normal bir çekirdek oluşur—ξ mertebesinde bir çapı olan normal (non - süper-iletken) faz bir silindiri süper iletken tutarlılık uzunluğudur. Normal çekirdek süper-iletken fazı bir delik bir rol oynar. Manyetik alan çizgilerini tüm örnek üzerinden normal çekirdeğe iletir. Tarama akımları çekirdek λL-çevresinde dolaşan ve süper iletken geri kalan ekranı çekirdek manyetik alanıdır. Toplamda, her bir Abrikosov girdap manyetik akı Φ0 bir kuantum taşır. Teorik olarak, delik başına birden fazla kuantum akı olması mümkün olsa da, Abrikosov bu girdaplar n> 1 kararsız ve n = 1 ile birkaç girdaplar bölünmüştür. Gerçek bir delikte n>1 derece ile kararlıdır, gerçekte delik kendini birkaç küçük deliğe bölmüş olamaz.

Manyetik akı ölçümü
Manyetik akı kuantum Josephson etkisini istismar ederek büyük bir hassasiyetle ölçülebilir. Von Klitzing sabiti RK = h/e2, ölçümü ile birleştiğinde bu tarihte elde edilen h Planck sabitinin en hassas değerini sağlar. Bu h genellikle mikroskobik küçük sistemlerin davranışı ile ilişkili olduğu için dikkat çekiyor, bir süper iletken içindeki manyetik akı ölçümü ve kuantum Hall etkisi ise toplu olaylar parçacıkları büyük termodinamik numaraları ile ilgilidir.

Ayrıca bakınız

  • Macroscopic quantum phenomena
  • Committee on Data for Science and Technology
  • Brian Josephson
  • Dirac flux quantum
  • von Klitzing constant

Kaynakça

  1. ^ "Josephson constant KJ". 2010 CODATA recommended values. 9 Eylül 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 10 Ocak 2012. 
  2. ^ "magnetic flux quantum Φ0" 4 Temmuz 2015 tarihinde Wayback Machine sitesinde arşivlendi.. 2010 CODATA recommended values. Retrieved 10 January 2012.
  3. ^ Doll, R.; Näbauer, M. (July 1961). "Experimental Proof of Magnetic Flux Quantization in a Superconducting Ring". Physical Review Letters 7(2): 51–52. Bibcode:1961PhRvL...7...51D.doi:10.1103/PhysRevLett.7.51.
  4. ^ Deaver, Bascom; Fairbank, William (July 1961)."Experimental Evidence for Quantized Flux in Superconducting Cylinders". Physical Review Letters 7 (2): 43–46. Bibcode:1961PhRvL...7...43D.doi:10.1103/PhysRevLett.7.43.

Kaynak hatası: <references> üzerinde tanımlanan "Deaver:1961:FluxQuantum" adındaki <ref> etiketi önceki metinde kullanılmıyor. (Bkz: )
Kaynak hatası: <references> üzerinde tanımlanan "Doll:1961:FluxQuantum" adındaki <ref> etiketi önceki metinde kullanılmıyor. (Bkz: )
Kaynak hatası: <references> üzerinde tanımlanan "CODATA:2010:FluxQuantumValue" adındaki <ref> etiketi önceki metinde kullanılmıyor. (Bkz: )

Kaynak hatası: <references> üzerinde tanımlanan "EG:AV@MesoSC" adındaki <ref> etiketi önceki metinde kullanılmıyor. (Bkz: )

İlgili Araştırma Makaleleri

Schrödinger denklemi, bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adında bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini gösteren denklemi ilk bulan Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. 1900 yılında Max Planck'ın ortaya attığı "kuantum varsayımları"nın ardından, 1924'te ortaya atılan de Broglie varsayımı ve 1927'de ortaya atılan Heisenberg belirsizlik ilkesi bilim dünyasında yeni ufukların doğmasına sebep olmuştur. Bu gelişmeler Max Planck'ın kuantum varsayımları ve Schrödinger'in dalga mekaniği ile birleştirilerek kuantum mekaniğini ortaya çıkarmıştır.

<span class="mw-page-title-main">Dalga fonksiyonu</span>

Kuantum fiziğinde dalga fonksiyonu izole bir kuantum sistemindeki kuantum durumunu betimler. Dalga fonksiyonu karmaşık değerli bir olasılık genliğidir ve sistem üzerindeki olası ölçümlerin olasılıklarının bulunmasını sağlar. Dalga fonksiyonu için en sık kullanılan sembol Yunan psi harfidir ψ ve Ψ.

Süperiletkenlik, süperiletken adı verilen maddelerin karakteristik bir kritik sıcaklığın (Tc) altında derecelere soğutulmasıyla ortaya çıkan, maddenin elektriksel direncinin sıfır olması ve manyetik değişim alanlarının ortadan kalkması şeklinde görülen bir fenomendir. 8 Nisan 1911 tarihinde Hollandalı fizikçi Heike Kamerlingh Onnes tarafından keşfedilmiştir. Ferromanyetizma ve atomik spektrumlar gibi, süperiletkenlik kuantum mekaniğine girer. Karakteristik özelliklerini Meissner efektinden alır; süperiletken, süperiletkenlik durumuna geçerken bütün manyetik alan çizgilerini içeriden dışarıya atar. Meissner efektinin görülmesi de süperiletkenliğin klasik fizik tarafından mükemmel iletkenlik olarak tasvir edilmesini olanaksız hale getirir.

<span class="mw-page-title-main">Bose-Einstein yoğunlaşması</span>

Bose-Einstein yoğunlaşması (BEY), parçacıkları bozonlardan oluşan maddelerin en alt enerji seviyesinde yoğunlaştığı, kuantum etkilerinin gözlenebildiği maddenin bir halidir. Bozonik atomlar için, seyreltilmiş gaz halinde lazer soğutması aracılığıyla mutlak sıfır sıcaklığına doğru inilerek bu hale geçiş yani yoğunlaşma sağlanabilir. Atomların klasik gazlardan farklı olarak Maxwell-Boltzmann istatistiği yerine Bose-Einstein istatistiğine makroskobik olarak/büyük ölçekte uyması BEY'nin belirleyici özelliğidir.

<span class="mw-page-title-main">İndüktans</span>

İndüktans elektromanyetizma ve elektronikte bir indüktörün manyetik alan içerisinde enerji depolama kapasitesidir. İndüktörler, bir devrede akımın değişimiyle orantılı olarak karşı voltaj üretirler. Bu özelliğe, onu karşılıklı indüktanstan ayırmak için, aynı zamanda öz indüksiyon da denir. Karşılıklı indüktans, bir devredeki indüklenen voltajın başka bir devredeki akımın zamana göre değişiminin etkisiyle oluşur.

<span class="mw-page-title-main">Enerji seviyesi</span>

Enerji seviyesi, atom çekirdeğinin etrafında katman katman biçiminde bulunan kısımların her biridir. Bu yörüngelerde elektronlar bulunur. Yörüngenin numarası; 1, 2, 3, 4, ... gibi sayı değerlerini alabilir. Yörünge numarasına baş kuantum sayısı da denir ve "n" ile gösterilir. Yörünge numarası ile yörüngenin çekirdeğe uzaklığı doğru orantılıdır.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

Fizikte Planck uzunluğu (ℓP), Planck birimleri olarak bilinen doğal birimler sisteminde uzunluk birimidir ve vakumda ışık hızı ile Planck zamanı çarpımına eşittir.

Stern-Gerlach deneyi Alman fizikçi Otto Stern ve Walther Gerlach tarafından isimlendirilen taneciklerin sapmasının kuantum mekaniği alanında önemli bir deneydir. 1922 yılında Otto Stern ve Walther Gerlach tarafından gerçekleştirilen bu deney, genellikle parçacıkların saçınımını kullanarak kuantum mekaniğinin temel noktalarını açığa çıkarması açısından önemlidir. Bu deney elektronların ve atomların özünde kuantum özelliklerine sahip olduğunu ve ölçülürken kuantum mekaniğinin sistemi nasıl etkilediğini ispat etmek için yapılmaktadır.

<span class="mw-page-title-main">Solenoid</span>

Solenoid, sıkıştırılmış sarmal eğri şeklindeki sarılı bir bobindir. Bu terim Fransız fizikçi André-Marie Ampère tarafından sarmal bir bobin tasarlamak üzere bulunmuştur.

<span class="mw-page-title-main">SQUID</span>

SQUID Süper İletken Kuantum Girişim Cihazı. Josephson eklemleri içeren süper iletken halkalardan oluşur. Çok küçük manyetik alanların ölçülmesinde kullanılır. Zaman içinde tıp, bilgisayar, jeoloji, biyofizik ve metrolojinin de uygulama alanı içerisine girmiştir. Bir süperiletken; halkanın içinden geçen manyetik akının kuantize olması, yani akım birim kuantası olan h/2e(Planck sabiti/Cooper çiftinin elektrik yükü)değerinin her zaman tam katı olmasını tanımlar.

<span class="mw-page-title-main">Aleksey Abrikosov</span> Rus-Amerikalı teorik fizikçi (1928 – 2017)

Aleksey Alekseyeviç Abrikosov, Moskova doğumlu Rus Teorik fizikçidir. 2003 yılında Nobel Fizik Ödülünü kazanmıştır.

Elektromanyetik indüksiyon, değişen bir alana maruz kalmış bir iletkenin üzerindeki potansiyel fark (voltaj) üretimidir.

Dalga işlevinin çöküşü, kuantum dilinde, gözlemcinin de katılımcı olması durumu.

Kuantum mekaniği madde ve atomların ve atom içindeki parçacıklar ölçeğinde enerji ile etkileşimlerinin davranışını açıklayan bilimsel ilkeler organıdır: Bu makaleye teknik olmayan konuların tanıtımında ulaşabilirsiniz.

Bohr yarıçapı bir fizik sabitidir. Hidrojen atomunun, protonu ve elektronu arasındaki mesafeye eşittir. Bohr yarıçapının, bir atomda Bohr atom modeli içindeki rolünden dolayı adlandırılmak istenmiştir. Fakat bu olay Niels Bohr'dan sonra gerçekleşmiştir. Uluslararası birimler sisteminde Bohr yarıçapı:

 : serbest uzayın elektriksel geçirgenliği
 : Planck sabiti
 : elektronun kütlesi
 : elemanter yük
 : ışık hızı sabiti
 : ince yapı sabiti

Kuantum tüneli, parçacığın bariyer boyunca olan kuantum mekaniğini ifade eder. Bu, Güneş gibi yıldızlar dizisinde meydana gelen nükleer birleşmeler gibi birçok fiziksel olayda önemli bir rol oynar. Tünel diyotu, kuantum bilgisayarı ve taramalı tünelleme mikroskobu gibi modern araçlarda önemli uygulamaları vardır. Fiziksel olay olarak etkisi ve kabul görülürlüğü 20. yüzyılın başlarında ve ortalarına doğru geldiği tahmin ediliyor.

<span class="mw-page-title-main">Eddy akımı</span>

Eddy akımı Faraday’ın indüksiyon kanunundan dolayı, manyetik alan değiştiğinde iletkenlerin içerisinde oluşan çembersel elektrik akımıdır. Eddy akımı kapalı bir döngünün içerisinde, manyetik alana dik düzlemlerde akar. Sabit bir iletkenin içerisinde; AC elektromıknatıs veya trafo kullanılarak oluşturulmuş, zamana bağlı değişen bir manyetik alan ile veya sabit bir mıknatısa göre hareketli bir iletken ile oluşturulabilirler. Belirli bir çerçeve içerisinde oluşan akımın büyüklüğü; manyetik alanın büyüklüğü, çerçevenin alanı, çerçevenin içerisinde oluşmuş manyetik akının anlık değişim miktarı ile doğru, üzerinde aktığı maddenin iç direnciyle ters orantılıdır.

Atom fiziğinde Balmer serileri veya Balmer çizgileri hidrojen atomunun tayf çizgilerini emisyonu olan isimlendirilmiş altı serinin gösterimidir.. Balmer serileri Johann Balmer tarafından 1885'te deneysel olarak bulunmuş olan Balmer folmulü sayesinde hesaplanır.

Kuantum Hall etkisi, Hall etkisinin kuantum mekaniği sürümüdür. Birbirine dik elektriksel ve manyetik alan içerisindeki bir iletken veya yarı iletkenden hem elektriksel alan yönünde hem de elektriksel ve manyetik alana dik yönde akım geçer. Geçen akıma göre her iki doğrultuda da iletkenlik ölçüldüğünde iletkenliğin manyetik alanının tersiyle doğru orantılı olduğu görülür. B=10 Tesla gibi yüksek manyetik alanlarda ise bu orantı doğrusallıktan sapar ve doldurma çarpanının belirli katlarında enine iletkenlikte düz bölgeler gözlenir. Bu bölgeler doldurma çarpanının tam sayı katlarında gözlenirse tam sayı kuantum Hall etkisi, kesirli katlarında gözlenirse kesirli kuantum Hall etkisi denir. Bu düzlüklerdeki iletkenlik değeri evrensel sabitler olan elektron yükünün karesinin, Planck sabitine bölümünün tam veya kesirli katları cinsinden gözlenir. Bu oran ince yapı sabitinin hassas olarak belirlenmesinde kullanılmaktadır. Öte yandan boyuna iletkenlik, enine iletkenlikteki manyetik alanın tersine bağlı düzlüklerin bir sonraki düzlüğe geçtiği bölgede sonlu değerler alırken düzlük bölgesinde sıfırdır.