İçeriğe atla

Manto konveksiyonu

Manto konveksiyonu, gezegenin içinden yüzeyine ısı taşıyan konveksiyonu akımlarının sebep olduğu, Dünya'nın katı silikat örtüsünün çok yavaş sürünen hareketidir.[1][2]

Dünya'nın yüzey litosferi astenosferin üstüne biniyor ve ikisi üst manto bileşenlerini oluşturuyor. Litosfer, karşıt plaka sınırlarında sürekli olarak yaratılan ve tüketilen bir dizi plakaya ayrılır. Birikimin, deniz tabanının yayılması ile ilişkili bir plakanın büyüyen kenarlarına manto eklenmesi ile oluşur. Bu sıcak eklenen malzeme ısı iletimi ve taşınımı ile soğur. Plakanın tüketim kenarlarında, malzeme yoğunlaşmak için termal olarak büzülmüş ve genellikle bir okyanus açmasında çökme sürecinde kendi ağırlığı altında batmaktadır.[3]

Bu çıkarılan malzeme Dünya'nın iç kısmına gömülür. Bazı çöktürülmüş materyallerin alt mantoya ulaştığı görülmektedir,[4] diğer bölgelerde ise, muhtemelen spinelden silikat perovskite ve magneziowustite, endotermik reaksiyona bir faz geçişinden dolayı bu materyalin daha da batması engellenmektedir.[5]

Temel mekanizmalar çeşitlilik gösterse de, bastırılmış okyanus kabuğu volkanizmayı tetikler. Volkanizma, kısmen erimiş mantoya kaldırma kuvveti ekleyen ve yoğunluğundaki azalma nedeniyle kısmi eriyiğin yukarı akışına neden olacak işlemler nedeniyle oluşabilir. İkincil konveksiyon, plaka içi ekstansiyonun[6] ve manto tüylerinin bir sonucu olarak yüzey volkanizmasına neden olabilir.[7]

Manto konveksiyonu tektonik plakaların Dünya yüzeyinde hareket etmesine neden olur.[8] Hadean döneminde çok daha aktif olduğu görülmekte, daha ağır erimiş demir, nikel ve sülfürlerin çekirdeğe ve daha hafif silikat minerallerin kütle çekimine göre sınıflandırılmasıyla sonuçlanmaktadir.

Tarihçe

Manto konveksiyon kavramı, 20. yüzyılın başından bu yana, önce Alpler gibi kıvrımlı dağların jeolojisini açıklamak için, sonra da derin deniz gayzerleri ve bölgesel volkanik fissür sistemleri gibi diğer büyük jeotektonik formlara doğru, katı dünya kabuğunun altındaki magma akışları ve magmatik kütle transferleri fikrinden gelişti .

Konveksiyon çeşitleri

Üst (3) ve alt (5) mantonun yerini gösteren toprak şekli.
Dünya sıcaklığı ve derinlik karşılaştırması. Kesik eğri: katmanlı manto konveksiyonu Katı eğri: tam manto konveksiyonu.[9]

20. yüzyılın sonlarında, jeofizik topluluğu içinde konveksiyonun "katmanlı" veya "bütün" olup olmayacağı konusunda önemli tartışmalar yaşanmıştır.[10][11] Bu tartışmalar hala devam etmektedir. Sismik tomografi, manto konveksiyonunun sayısal simülasyonları ve Dünya'nın yerçekimi alanının incelenmesi en azından şu anda bütün manto konveksiyonunun varlığını ortaya koymaya yetmektedir. Bu modelde soğuk alttan geçen okyanus litosferi sayesinde çekirdek-manto sınırına kadar iner ve sıcak tüyler SPK'dan yüzeye kadar yükselir.[12] Bu resim genellikle manto geçiş bölgesinden geçen levha ve tüy benzeri anomalileri gösteren küresel sismik tomografi[] modellerinin sonuçlarına dayanmaktadır.

Alt tabakaların manto geçiş bölgesinden geçmesi ve alt mantoya inmesi artık kabul edilmiştir. Manto konveksiyon stili için önemli çıkarımlarla birlikte tüylerin varlığı ve sürekliliği hakkındaki tartışmalar da hâlâ devam etmektedir. Bu tartışmalar tabaka içinde volkanizmanın sığ üst manto veya alt mantonun tüylerden kaynaklanıp kaynaklanmadığı konusundaki tartışmalara bağlıdır.[13] Birçok jeokimya çalışması plaka içi alanlardan çıkan lavların bileşimden sığ türetilmiş orta okyanus sırtından farklı olduğunu ileri sürmektedir. Bazaltlar (MORB) Özellikle tipik olarak yüksek Helyum-3 - Helyum-4 oranlarına sahiptirler. eski bir nüklid olan Helyum-3 yeryüzünde doğal olarak üretilememektedir. Ayrıca patladığında dünya atmosferinden hızla çıkmaktadır.Okyanus Adası Bazaltlar'ının (OIB'ler) yüksek He-3 / He-4 oranı dünyanın daha önce eritilmemiş ve MORB kaynağı ile aynı şekilde yeniden işlenilmiş kısmından kaynak oluşturulması gerekildiği düşünülmektedir. Bununla birlikte diğerleri jeokimyasal farklılıkların yüzeye yakın bir materyalinin küçük bir bileşeninin litosferden de dahil olabileceğini belirtmiştir.

Planform ve taşınım gücü

Manto soğutma işleminde retilen bir superplume[14]

Isı transferi konveksiyon ve iletim

Dünya üzerinde, dünya'nın mantosundaki konveksiyon için Rayleigh sayısının şiddetli konveksiyonun 10 7 civarında olduğu tahmin edilmektedir. Bu değer tüm manto konveksiyonuna karşılık gelir (yani, dünya yüzeyinden çekirdekli sınıra uzanan konveksiyon). Küresel ölçekte bu konveksiyonun yüzey ifadesi tektonik plaka hareketleridir ve bunlar birkaç cm / a hıza sahiptir.[15][16][17]

Litosferin altındaki düşük viskoziteli bölgelerde meydana gelen küçük ölçekli konveksiyon için hızlar daha yüksek olabilir ve viskozitelerin daha büyük olduğu en alt mantoda daha yavaş olabilir. Tek bir sığ konveksiyon döngüsü 50 milyon yıl sürerken daha derin konveksiyon 200 milyon yıla yakın olabilir.[18]

Şu anda tüm manto konveksiyonun geniş ölçekli aşağı doğru akım içerdiği düşünülmektedir. Amerika ve Batı Pasifik'in altında her iki bölge de uzun bir düşüş tarihi olan ve Orta Pasifik ve Afrika'nın altında yer alan ve her ikisi de yükselme ile tutarlı dinamik topoğrafyadır.[19]

Bu geniş ölçekli akış modeli Dünya'nın mantosundaki konveksiyonun yüzey ifadesi olan ve şu anda 2 dereceyi gösteren tektonik plaka hareketleriyle de tutarlıdır.[20] Net tektonik ayrışmanın Afrika ve Pasifik'ten uzaklığı 250 Milyar yıldır. Bu genel manto akış paterninin uzun vadeli stabilitesini gösterir ve diğer çalışmalarla da tutarlıdır.[21][22][23][24] En altta yer alan LLSVP bölgelerinin uzun vadeli istikrarını öneren bu yapıların temelini oluşturan mantodur.

Mantoda sürünme

Alt ve üst manto arasındaki değişken sıcaklıklar ve basınçlar nedeniyle, alt mantoda baskın çıkık sürünmesi ve zaman zaman üst mantoda baskın olarak yayılan sürünme ile çeşitli sürünme süreçleri meydana gelebilir. Bununla birlikte, üst ve alt manto arasındaki sürünme işlemlerinde büyük bir geçiş bölgesi vardır ve hatta her bölüm içinde sürünme özellikleri, konum ve dolayısıyla sıcaklık ve basınç ile güçlü bir şekilde değişebilir. Güç hukuku sünme bölgelerinde, n = 3-4 olan verilere takılan sünme denklemi standarttır.[25]

Üst manto öncelikle olivin ((Mg, Fe) 2SiO4) 'ten oluştuğundan, üst mantonun reolojik özellikleri büyük ölçüde olivindir. Olivinin gücü sadece erime sıcaklığı ile ölçeklendirmekle kalmaz, aynı zamanda su ve silika içeriğine de çok duyarlıdır. Başta Ca, Al ve Na olmak üzere safsızlıklardan kaynaklanan katılaşma depresyonu ve basınç, sünme davranışını etkiler ve böylece lokasyonlu sünme mekanizmalarının değişmesine katkıda bulunur. Sünme davranışı genellikle strese karşı homolog sıcaklık olarak çizilirken, manto durumunda, stresin basınca bağımlılığına bakmak genellikle daha yararlıdır. Stres alan üzerinde basit bir kuvvet olmasına rağmen, jeolojide alanı tanımlamak zordur. Denklem 1, stresin basınca bağımlılığını gösterir. Mantodaki yüksek basınçları simüle etmek çok zor olduğundan (300–400 km'de 1MPa), düşük basınçlı laboratuvar verileri genellikle metalurjiden sürünme kavramları uygulanarak yüksek basınçlara tahmin edilir.[26]

Mantonun çoğunun homolog sıcaklıkları 0.65-0.75'tir .Mantodaki gerilmeler, yoğunluk, yerçekimi, termal genleşme katsayıları, konveksiyonu yönlendiren sıcaklık farklarına bağlıdır ve hepsi 3-30MPa'nın bir fraksiyonu etrafında stres veren mesafe konveksiyonu meydana gelir. Büyük tane boyutları nedeniyle (birkaç mm kadar yüksek streslerde), Nabarro-Herring (NH) sürünmesinin gerçekten baskın olması olası değildir. Büyük tane boyutları göz önüne alındığında, çıkık sürünmesi baskın olma eğilimindedir. 14 MPa, difüzyonel sürünmenin baskın olduğu ve üzerinde güç yasası sürüntüsünün 0.5T olivinde baskın olduğu strestir. Bu nedenle, nispeten düşük sıcaklıklar için bile, çalışacağı stres yayılma sünmesi gerçekçi koşullar için çok düşüktür. Güç yasası sürünme oranı, zayıflama, difüzyonun aktivasyon enerjisini azaltma ve böylece NH sürünme hızını arttırma nedeniyle artan su içeriği ile artmasına rağmen, NH genellikle hâkim olacak kadar büyük değildir. Bununla birlikte, yayılma sünmesi üst mantonun çok soğuk veya derin kısımlarında baskın olabilir. Mantodaki ek deformasyon, transforme geliştirilmiş sünekliğe atfedilebilir. 400 km'nin altındaki olivin, sünekliğin artması nedeniyle daha fazla deformasyona neden olabilen basınca bağlı faz dönüşümüne uğrar.[26] Güç yasası sürünmesinin baskınlığına ilişkin daha fazla kanıt, deformasyonun sonucu olarak tercih edilen kafes yönelimlerinden kaynaklanmaktadır. Dislokasyon sürünmesi altında, kristal yapılar düşük stres yönlerine yönelir. Bu, yayılma sürünmesi altında gerçekleşmez, bu nedenle örneklemlerde tercih edilen yönelimlerin gözlemlenmesi, çıkık sürünmesinin baskınlığına güvenir.[27]

Diğer gök cisimlerinde manto konveksiyonu

Benzer bir yavaş konveksiyon işleminin diğer gezegenlerde (örneğin Venüs, Mars) ve bazı uydularda (örn. Europa, Enceladus) meydana gelmesi (veya oluşması) muhtemeldir .

Ek bilgiler

  • Çekirdek manto sınırı
  • Dünya'nın dinamikleri - jeodinamik Çalışma
  • Uyumluluk-Jeokimya eriyik elemanlarının iz dağılımı.

Kaynakça

  1. ^ Kobes, Randy. "Mantle Convection". Archived from the original on 9 June 2011. Retrieved 26 February 2020. Physics Department, University of Winnipeg
  2. ^ Ricard, Y. (2009). "2. Physics of Mantle Convection". In David Bercovici and Gerald Schubert (ed.). Treatise on Geophysics: Mantle Dynamics. 7. Elsevier Science. ISBN 9780444535801.
  3. ^ Gerald Schubert; Donald Lawson Turcotte; Peter Olson (2001). "Chapter 2: Plate tectonics". Mantle convection in the earth and planets. Cambridge University Press. pp. 16 ff. ISBN 978-0-521-79836-5.
  4. ^ Fukao, Yoshio; Obayashi, Masayuki; Nakakuki, Tomoeki; Group, the Deep Slab Project (2009-01-01). "Stagnant Slab: A Review" (PDF). Annual Review of Earth and Planetary Sciences. 37 (1): 19–46. Bibcode:2009AREPS..37...19F. doi:10.1146/annurev.earth.36.031207.124224.
  5. ^ Gerald Schubert; Donald Lawson Turcotte; Peter Olson (2001). "§2.5.3: Fate of descending slabs". Cited work. pp. 35 ff. ISBN 978-0-521-79836-5.
  6. ^ Foulger, G.R. (2010). Plates vs. Plumes: A Geological Controversy. Wiley-Blackwell. ISBN 978-1-4051-6148-0.
  7. ^ Kent C. Condie (1997). Plate tectonics and crustal evolution (4th ed.). Butterworth-Heinemann. p. 5. ISBN 978-0-7506-3386-4.
  8. ^ Moresi, Louis; Solomatov, Viatcheslav (1998). "Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus". Geophysical Journal International. 133 (3): 669–82. Bibcode:1998GeoJI.133..669M. CiteSeerX 10.1.1.30.5989. doi:10.1046/j.1365-246X.1998.00521.x.
  9. ^ Ctirad Matyska ve David A Yuen (2007). "Şekil 17 Çok katlı tüylerin alt-manto malzeme özellikleri ve konveksiyon modellerinde " . Plakalar, tüyler ve gezegen süreçleri . Amerika Jeoloji Topluluğu. s. 159. ISBN 978-0-8137-2430-0.
  10. ^ Donald Lawson Turcotte; Gerald Schubert (2002). Jeodinamik (2. baskı). Cambridge Üniversitesi Yayınları. ISBN 978-0-521-66624-4.
  11. ^ Gerald Schubert; Donald Lawson Turcotte; Peter Olson (2001). s. 616. ISBN 978-0-521-79836-5
  12. ^ Montelli, R; Nolet, G; Dahlen, FA; Üstatlar, G; Engdahl ER;Hung SH (2004). "Sonlu frekanslı tomografide mantoda çeşitli tüyler görülür". Bilim . 303 (5656): 338-43. Bibcode : 2004Sci ... 303..338M 3 Eylül 2019 tarihinde Wayback Machine sitesinde arşivlendi. . doi : 10.1126 / science.1092485 19 Mayıs 2020 tarihinde Wayback Machine sitesinde arşivlendi. . PMID 14657505[] .
  13. ^ Foulger, GR (2010). Tabaklar ve Tüyler: Jeolojik Bir Tartışma 25 Kasım 2017 tarihinde Wayback Machine sitesinde arşivlendi. . Wiley-Blackwell. ISBN 978-1-4051-6148-0.
  14. ^ Ctirad Matyska & David A Yuen (2007). "Figure 17 in Lower-mantle material properties and convection models of multiscale plumes". Plates, plumes, and planetary processes. Geological Society of America. p. 159. ISBN 978-0-8137-2430-0.
  15. ^ Çin Tian Shan Dağları'nın altındaki üst mantoda ki küçük ölçekli konveksiyon. http://www.vlab.msi.umn.edu/reports/allpublications/files/2007-pap79.pdf 30 Mayıs 2013 tarihinde Wayback Machine sitesinde arşivlendi.Archived 2013-05-30 Wayback Machine
  16. ^ polar gezinti ve manto konveksiyonu http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?bibcode=1972IAUS...48..212T&db_key=AST&page_ind=0&data_type=GIF&type=SCREEN_VIEW&classic=YES 15 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi.
  17. ^ Belirtilen hızlarla konveksiyonu gösteren resim. arşivlenmiş kopya orijinal[] kaynağından arşivlendi 2011-09-28. Erişim tarihi: 2011-08-29.
  18. ^ Serbestçe Hareket Eden Bir Üst Sınırlı Termal Konveksiyon, Bkz. Bölüm IV Tartışma ve Sonuçlar. http://physics.nyu.edu/jz11/publications/ConvecA.pdf 31 Temmuz 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  19. ^ Lithgow-Bertelloni, Carolina; Silver, Paul G. (1998). "Dinamik topografya, plaka itici güçler ve Afrika'daki süper yer". Doğa. 395 (6699): 269-272 Bibcode:1998Natur.395..269L 3 Eylül 2019 tarihinde Wayback Machine sitesinde arşivlendi.. doi:10.1038/26212 6 Ekim 2020 tarihinde Wayback Machine sitesinde arşivlendi.. ISSN 0028-0836 12 Mayıs 2020 tarihinde Wayback Machine sitesinde arşivlendi..
  20. ^ Conrad, Clinton P. .; Steinberger, Bernhard; Torsvik, Trond H. (2013). "Levha tektoniklerinin net özellikleri ile ortaya çıkan aktif manto üstyapısının stabilitesi". 12 Ağustos 2020 tarihinde Wayback Machine sitesinde arşivlendi. Doğa. 498 (7455): 479-482. Bibcode: 2013Natur.498..479C. 3 Eylül 2019 tarihinde Wayback Machine sitesinde arşivlendi. DOI: / nature12203 10.1038. hdl: 10852/61522 7 Haziran 2020 tarihinde Wayback Machine sitesinde arşivlendi.. ISSN 0028-0836. 12 Mayıs 2020 tarihinde Wayback Machine sitesinde arşivlendi. PMID 23803848[].
  21. ^ Conrad, Clinton P. .; Steinberger, Bernhard; Torsvik, Trond H. (2013). " Levha tektoniklerinin net özellikleri ile ortaya çıkan aktif manto üstyapısının stabilitesi 12 Ağustos 2020 tarihinde Wayback Machine sitesinde arşivlendi.".Doğa. 498 (7455): 479-482. Bibcode: 2013Natur.498..479C. 3 Eylül 2019 tarihinde Wayback Machine sitesinde arşivlendi. DOI: / nature 12203 10.1038. hdl: 10852/61522. 7 Haziran 2020 tarihinde Wayback Machine sitesinde arşivlendi. ISSN 0028-0836 12 Mayıs 2020 tarihinde Wayback Machine sitesinde arşivlendi.. PMID 23803848[].
  22. ^ Torsvik, Trond H .; Steinberger, Bernhard; Ashwal, Lewis D .; Doubrovine, Pavel V .; Trønnes, Reidar G. (2016). "Dünya evrimi ve dinamikleri — Kevin Burke'e bir övgü 3 Haziran 2020 tarihinde Wayback Machine sitesinde arşivlendi.". Kanada Yer Bilimleri Dergisi. 53 (11): 1073-1087. Bibcode: 2016CaJES..53.1073T 3 Eylül 2019 tarihinde Wayback Machine sitesinde arşivlendi.. doi: 10,1139 / cjes-2015-0228. 1 Temmuz 2020 tarihinde Wayback Machine sitesinde arşivlendi. hdl: 10852/61998 3 Haziran 2020 tarihinde Wayback Machine sitesinde arşivlendi.. ISSN 0008-4077. 12 Aralık 2019 tarihinde Wayback Machine sitesinde arşivlendi.
  23. ^ Torsvik, Trond H .; Smethurst, Mark A .; Burke, Kevin; Steinberger, Bernhard (2006). "Derin mantodaki büyük düşük hızlı illerin sınırlarından üretilen büyük magmatik bölgeler." Uluslararası Jeofizik Dergisi. 167 (3): 1447-1460. Bibcode:2006GeoJI.167.1447T 3 Eylül 2019 tarihinde Wayback Machine sitesinde arşivlendi.. doi:10.1111/j.1365-246x.2006.03158.x. 17 Mayıs 2019 tarihinde Wayback Machine sitesinde arşivlendi. ISSN 0956-540X 28 Nisan 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  24. ^ Dziewonski, Adam M .; Lekic, Vedran; Romanowicz, Barbara A. (2010). "Manto Çapa Yapısı: Aşağıdan yukarı tektonik için bir argüman". Dünya ve Gezegensel Bilim Mektupları. 299 (1–2): 69–79. Bibcode: 2010E & PSL.299 ... 69D 3 Eylül 2019 tarihinde Wayback Machine sitesinde arşivlendi.. doi: 10.1016 / j.epsl.2010.08.013 17 Mayıs 2019 tarihinde Wayback Machine sitesinde arşivlendi.. ISSN 0012-821X 10 Mayıs 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  25. ^ Weertman, J.; White, S.; Cook, Alan H. (1978-02-14). "Creep Laws for the Mantle of the Earth [and Discussion]". Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 288 (1350): 9–26. Bibcode:1978RSPTA.288....9W. doi:10.1098/rsta.1978.0003. ISSN 1364-503X.
  26. ^ a b Borch, Robert S.; Green, Harry W. (1987-11-26). "Dependence of creep in olivine on homologous temperature and its implications for flow in the mantle". Nature. 330 (6146): 345–48. Bibcode:1987Natur.330..345B. doi:10.1038/330345a0.
  27. ^ Karato, Shun-ichiro; Wu, Patrick (1993-05-07). "Rheology of the Upper Mantle: A Synthesis". Science. 260 (5109): 771–78. Bibcode:1993Sci...260..771K. doi:10.1126/science.260.5109.771. ISSN 0036-8075. PMID 17746109.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Dünya'nın yapısı</span> dünyanın iç yapısını anlatan madde

Dünya'nın iç yapısı: bir dış silikat katı kabuk, oldukça viskoz bir astenosfer ve manto, mantodan çok daha az viskoz olan sıvı bir dış çekirdek ve katı bir iç çekirdek olmak üzere küresel kabuklarda katmanlıdır. Dünya'nın iç yapısının bilimsel olarak anlaşılması, topografya ve batimetri gözlemlerine, dışa doğru kaya gözlemlerine, volkanlar veya volkanik aktiviteyle yüzeye getirilen örneklere, Dünya'dan geçen sismik dalgaların analizine, Dünya'nın yerçekimi ve manyetik alanlarına, Dünya'nın derin iç kısmının karakteristiği basınç ve sıcaklıklardaki kristal katılarla deneyler.

<span class="mw-page-title-main">Levha tektoniği</span> Litosferin yapısını inceleyen jeoloji dalı

Levha tektoniği } Dünya'nın litosfer'inin yaklaşık 3,4 milyar yıl öncesinden beri yavaş hareket eden birçok büyük tektonik levha içerdiği düşünülen genel kabul görmüş bilimsel bir teoridir.

<span class="mw-page-title-main">Dünya'nın yerkabuğu</span> Dünyanın dış tabakası

Yer kabuğu, taş küre veya litosfer, Yerküre'nin en dış kısmında bulunan yapıdır.

Manto, yer kabuğu ile çekirdek arasında yer alan, derinliğe göre değişen ısıya sahip bir yer katmanıdır. Mantonun üst kesimi yüksek sıcaklık ve basınçtan dolayı plastikimsi özellik gösterir. Alt kesimleri ise sıvı halde bulunur. Bu nedenle mantoda sürekli olarak alçalıcı-yükselici hareketler görülür. Kalınlığı 2.860 kilometreye yakındır. Ultra bazik kayaç veya ultramafik kayaçlardan oluşur. Dünya'nın en kalın katmanıdır. Ağır olup yoğunluğu 3,5–6 g/cm³ arasında bulunur. Bazı gezegenler, bazı asteroitler ve bazı gezegen uyduları mantoya sahiptir. Sıcaklığı 1900-3700 °C arasında değişir. Yapısında silisyum, magnezyum, nikel ve demir bulunmaktadır. Okyanus ortası sırtlarında oluşan kısmi manto erimesi okyanusal kabuğu, Yitim zonlarında meydana gelen kısmi manto erimeleri ise kıtasal kabuğu oluşturmaktadır.

<span class="mw-page-title-main">Olivin</span>

Olivin, yüksek sıcaklık silikat minerali ailesidir. Rengi siyahtan zeytin yeşiline değişir. Olivin adını, tephroit (Mn2SiO4), monticellit (CaMgSiO4), larnit (Ca2SiO4) ve kirschsteinite (CaFeSiO4)içeren mineraller grubuyla ilgili bir yapıya denir. Ortorombik simetride kristalleşen olivin grubu minerallerden (Mg,Fe)-olivinlerde Mg2SiO4 ve Fe2SiO4 uç üyeleri arasında tam bir katı çözelti oluştururlar. Ayrıca Fe ve Mn olivinler arasında da sürekli bir seri bulunmaktadır.. Ultrabazik ve bazik kayaçlarda görülen önemli bir mafik mineraldir. Dünit adı verilen ultrabazik kayalar %90,100 olivinden oluşur. Dolomitik Kireç taşı bölgesel ve kontak metamorfizmaları sırasında yüksek dereceli metamorfizma koşullarında forsterit bakımından zengin olivinler oluşur. Olivinlerin kimyasal bileşimleri -plajioklaslarda An (anortit) cinsinden olduğu gibi- içerisinde barındırdığı forsterit (Fo) yüzdesi ile ifade edilir. Örneğin Fo47 şeklindeki bir ifade mineralin % 47 forsteritten, % 53 fayalitten oluştuğunu gösterir.

<span class="mw-page-title-main">Tektonik</span>

Tektonik, yer kabuğunun yapısını, özelliklerini ve zaman içindeki gelişimini kontrol eden süreçtir. Özellikle, dağ inşası süreçlerini, kratonlar olarak bilinen kıtaların güçlü, eski çekirdeklerinin büyümesini, davranışını ve Dünya'nın dış kabuğunu oluşturan nispeten sert plakaların birbirleriyle etkileşme yollarını açıklar. Tektonik ayrıca küresel nüfusu doğrudan etkileyen deprem ve volkanik kuşakları anlamak için bir çevre sunmaktadır. Tektonik çalışmalar, fosil yakıtları ve metalik ve metalik olmayan kaynakların maden yataklarını arayan ekonomik jeologlar için kılavuz olarak önemlidir. Erozyon kalıplarını ve diğer Dünya yüzey özelliklerini açıklamak için jeomorfologlar için tektonik prensiplerin anlaşılması şarttır.

<span class="mw-page-title-main">Magma</span> yeraltında bulunan, erimiş haldeki kayaçlar

Magma, yeraltında bulunan, ergimiş haldeki kayaçlar. Kayaçların basınç düşmesi, sıcaklık yükselmesi, H2O ilavesi gibi etkenler altında erimesi sonucu oluşan silikat hamuru durumundaki eriyiklerdir. Yeryüzüne ulaşarak yanardağlardan püsküren magmaya lav denir. Magma, dünya yüzeyinin altında bulunur ve diğer karasal gezegenlerde ve bazı doğal uydularda da magmatizmanın kanıtı keşfedilmiştir. Erimiş kayanın yanı sıra, magma ayrıca kristaller ve volkanik gazlar içerebilir.

<span class="mw-page-title-main">Kıta kayması</span> Kıtaların bir zamanlar parçalanan ve şimdi yavaşça birbirinden uzaklaşan büyük bir kara alanı olduğu kuramı

Kıta Kayması Teorisi, 1912'de Alman meteorolog Alfred Wegener tarafından ortaya konulmuş olan ve kıtaların hareket halinde olduğunu ve bugünkü durumunu böylece aldığını öne süren bir teoridir. Kıta kayması, kıtaların birbirlerine ve okyanus havzalarına göre girmiş olduğu büyük ölçekli yatay hareketlerdir.

<span class="mw-page-title-main">Okyanus çukurlukları</span>

Derin okyanus çukurları, binlerce km uzunluğunda dar alanlardır ve okyanusların en derin kesimlerini oluştururlar. Bunlara denizaltı vadileri de denir. Hendeklerin çoğu Pasifik Okyanusu’nda yer alır ve bazılarının derinliği 10.000 m’yi geçer. Örneğin Mariana Hendeği’ndeki Challenger Çukuru’nun derinliği 11.022 m olarak ölçülmüştür. Challenger Çukuru, dünya okyanuslarında yer alan en derin çukur olarak bilinmektedir. Derin okyanus hendekleri, okyanus tabanlarının küçük bir bölümünü oluşturmasına karşılık çok önemli jeolojik yapılardır. Hendekler litosferik levhaların daldığı ve manto ya gömüldüğü levha yaklaşım alanlarıdır.Levhalardan biri diğerinin altına dalarken depremlerin yanı sıra volkanik aktivite de gelişir. Bu nedenle hendekler, volkanik ada yayı olarak bilinen yay şekilli aktif volkan kümelerine paralellik gösterir. Ayrıca And ve Cascade (Çağlayan) dağ sıralarının bir bölümünü oluşturan kıtasal volkanik yaylar da hendekler ile paralel bir gidiş gösterir. Pasifik Okyanusu kenarı boyunca gözlenen çok sayıda hendek ve ilişkili volkanik aktivite nedeniyle bu bölge ateş çemberi olarak adlandırılmıştır. Okyanus hendekleri genellikle okyanus tabanı seviyesinin 3-4 km altına kadar ulaşır.

<span class="mw-page-title-main">Astenosfer</span> mantonun yer kabuğuna yakın olan üst kısmı

Astenosfer kelimesinin kökeni Antik Yunan'dan gelmektedir. Mekanik olarak zayıf olduğundan ἀσθενός [asthenos] yani güçsüz kelimesinden türetilmiştir. Mekanik olarak zayıf ve üst mantoda ki sünek bölgedir. Litosferin altında, yüzeyin yaklaşık 80 ila 200 km derinliklerinde bulunur. Litosfer-astenosfer sınırı genellikle LAB olarak adlandırılır.

Jeodinamik jeofizik biliminin Yeryüzü dinamiği ile ilgilenen bir alt dalıdır. Manto konveksiyonunun levha hareketlerine ve deniz tabanının yayılmasına, dağ oluşumu, volkanlar, depremler ve fay oluşumu gibi jeolojik fenomenlere nasıl yol açtığını anlayabilmek üzere fizik, kimya ve matematik bilimlerinden faydalanmaktadır. Manyetik alanların, yerçekiminin ve sismik dalgaların ölçümüyle birlikte kaya mineralojisi ve bunların izotop jeokimyası gibi konularla da ilgilenir. Jeodinamik biliminin metotlarından diğer gezegenlerin keşfi için de faydalanılmaktadır.

<span class="mw-page-title-main">Yitim zonu</span> jeolojik bir süreçt

Yitim zonu, bir plakanın diğerinin altında hareket ettiği ve mantoda yüksek yerçekimi potansiyel enerjisi nedeniyle batmaya zorlandığı tektonik plakaların konverjan sınırlarında gerçekleşen jeolojik bir süreçtir. Bu işlemin gerçekleştiği bölgeler, batma bölgeleri olarak bilinir. Yitim oranları tipik olarak yılda santimetre cinsinden ölçülür, ortalama konverjan oranı çoğu plaka sınırı boyunca yılda yaklaşık iki ila sekiz santimetredir.

<span class="mw-page-title-main">Uzaklaşan levha sınırı</span>

Uzaklaşan levha sınırı, levha tektoniğinde farklı sınır ya da farklı plaka sınırları birbirinden uzaklaşmakta olan iki tektonik plaka arasında var olan doğrusal bir alandır. Okyanus tabanlarında okyanus ortası sırtı, karaların iç kısımlarında Büyük Rift Vadisi gibi kıta içi rift kuşakları oluştururlar.

Glasiyotektonik. Dünyadaki kabuğun son zamanlardaki dikey hareketleri çoğunlukla levha sınırları boyunca tektonik deformasyona bağlı olarak, volkanizma, su, buz gibi kabuk yüklemelerindeki değişiklikler ve çökeltiler kıta buz tabakalarının bozulmasına ve yükselmesine neden oldu.

<span class="mw-page-title-main">Yakınlaşan levha sınırları</span>

Yakınsak bir sınır Dünya üzerinde iki veya daha fazla litosfer plakasının çarpıştığı bir alandır. Bir plaka sonunda diğerinin altına kayar ve batma olarak bilinen bir işleme neden olur. Batırma bölgesi, Wadati – Benioff bölgesi adı verilen birçok depremin meydana geldiği bir düzlemle tanımlanabilir. Bu çarpışmalar milyonlarca ila on milyonlarca yıl arasında gerçekleşir ve volkanizmaya, depremlere, orojeneze, litosferin yok edilmesine ve deformasyona yol açabilir. Yakınsama sınırları okyanus-okyanus litosferi, okyanus-kıta litosferi ve kıta-kıta litosferi arasında meydana gelir. Yakınsak sınırlarla ilgili jeolojik özellikler kabuk türlerine bağlı olarak değişir.

<span class="mw-page-title-main">Litosfer</span> Dünyanın kabuklaşmış ve katılaşmış dış yüzeyidir

Litosfer, eski Yunancada "kayalık" Hintçede "küre" anlamlarına gelir. Tanım olarak ise, sert ve mekanik özellikleri ile tanımlanan karasal tipte bir gezegenin veya doğal uydunun en dış kabuğudur. Litosfer, kabuk ve üst mantonun binlerce yıl veya daha büyük zaman ölçeklerinde elastik olarak davranan üst mantonun en üst bölümünden oluşur. Gezegenimizin kaya kısmını oluşturan ve en dış katmanı olan kabuğu tanımlamada kimyasal ve mineraloji yapısı kullanılır. Litosferin altındaki katman, astenosfer olarak bilinir.

Dünya'nın iç yapısı küresel katmanlardan: bir dış (silikat) katı kabuk, son derece viskoz astenosfer ve üst manto, alt manto ve daha az viskoziteye sahip bir sıvı dış çekirdek ve katı bir iç çekirdekten oluşmaktadır. Dünya'nın iç yapısının bilimsel anlayışı topografya ve kaya gözlemleri, volkanlar veya volkanik aktivite tarafından daha büyük derinliklerden yüzeye getirilen örnekler, Dünya'nın içinden geçen sismik dalgaların analizi, Dünya'nın yerçekimi ve manyetik alanlarının ölçümleri ve basınç ve sıcaklıklarda değişiklik gibi deneyler Dünya'nın derin iç karakteristik özelliklerini oluşturmaktadır.

Manto, gezegen kütlelerinin çekirdekleri ve kabukları arasında yer alan jeolojik bir katmandır. Bu katman sıcak, yoğun, demir ve magnezyum bakımından zengin ve görece katı bir yapıdadır.

<span class="mw-page-title-main">Manto yükselmesi</span>

Manto yükselmesi, Dünya'nın mantosunda önerilen bir konveksiyon mekanizmasıdır. Yükselmenin başı sığ derinliklere ulaştığında kısmen eridiği için, Hawaii veya İzlanda gibi volkanik sıcak noktaların ve Deccan ve Sibirya gibi büyük magmatik bölgelerin nedeni olarak bir yükselme genellikle çağrılır. Bu tür volkanik bölgelerden bazıları tektonik levha sınırlarından uzakta bulunurken diğerleri levha sınırlarına yakın alışılmadık derecede büyük hacimli bir volkanizma temsil etmektedir.

Akışkanlar mekaniğinde, Rayleigh sayısı (Ra, Lord Rayleigh'e ithafen) bir akışkan için kaldırma kuvveti ilişkili bir boyutsuz sayıdır. Bu sayı, akışkanın akış rejimini karakterize eder: belirli bir alt aralıkta bir değer laminer akışı belirtirken, daha yüksek bir aralıktaki değer türbülanslı akışı belirtir. Belirli bir kritik değerin altında, akışkan hareketi olmaz ve ısı transferi konveksiyon yerine ısı iletimi ile gerçekleşir. Çoğu mühendislik uygulaması için Rayleigh sayısı büyük olup, yaklaşık 106 ile 108 arasında bir değerdedir.