İçeriğe atla

Manto (jeoloji)

Manto (Fra. manteau), gezegen kütlelerinin çekirdekleri ve kabukları arasında yer alan jeolojik bir katmandır. Bu katman sıcak, yoğun, demir ve magnezyum bakımından zengin ve görece katı bir yapıdadır.[1]

Dünya'nın mantosu

Yerkürenin katmanlarının gösterimi

Dünya'nın çekirdeği ile kabuğu arasında kabaca 2900 km[1] kalınlığında sıcak, yoğun ve genellikle katı bir materyal (yüksek sıcaklık nedeniyle derinlerde ergiyik halde) olan manto Dünya'nın hacminin yüzde 84'üne karşılık gelir. 4,5 milyar yıl önce Dünya oluşmaya başladığında görece ağır metaller olan demir ve nikel hızlıca merkeze gömülmeye başladı ve bir zaman sonra çekirdekçe yoğunlaştılar. Bu çekirdeğin etrafındaysa ergiyik bir materyal yer aldı ve bu ilksel mantoydu.

Kimyasal bileşim

Mantoyu oluşturan kayaçlar ağırlıklı olarak silikat(oksijen ve silikon bileşiği) grubu minerallerden oluşan kayaçlardır. Mantoda yaygın olarak olivin, piroksen ve garnete rastlanır. Bir diğer majör mineral magnezyum oksit'tir. Bunun yanı sıra demir, alüminyum, potasyum ve sodyum da mantoda bulunan elementlerdendir.[2]

Fiziksel özellikler

Mantonun kalınlığı 2900 km kadar olup temelde 3 ana kısma ayrılır: üst manto, geçiş bölgesi ve alt manto. Yüzeyden yaklaşık 400 km derinliğe kadar üst manto yer almaktadır. 400–660 km arası derinliklerde geçiş bölgesi yer alırken; 660–2900 km arasında alt manto bulunur. Üst manto da kendi içinde 2 alt tabakaya ayrılır: altta astenosfer ve onun üstünde litosfer. Yerin derinliklerindeki bu oluşumların doğrudan gözlemlenebilmesi olanaksız olduğundan yardımcı yöntemler kullanılmaktadır, bunların en önemlisi sismik dalgaların kullanılmasıdır.[3] Astenosfer, plastik özellik gösteren akışkan bir materyalden oluşurken; üst mantonun en yukarısındaki litosfer katı ve sert bir yapıdadır, dolayısıyla gevrektir. Mantodaki sıcaklık değişkenlik göstermektedir, kabuğa yakın kısımlarda sıcaklık 1000 °C civarındayken, çekirdeğin yakınlarında sıcaklık 3700 °C'ye çıkmaktadır. Bu sıcaklık-derinlik ilişkisi jeotermal gradyan olarak bilinir (yaklaşık olarak 1 km inildikçe 25 °C sıcaklık artar). Manto genel olarak katı ve akmaya dirençli (viskoz) bir yapıda olsa da manto yükselmesi ve levha sınırlarında akışkan (daha az viskoz) durumda bulunur, ayrıca derinliklerdeki sıcaklık ve basınç koşulları dolayısıyla akışkan ve plastik yapıdadır.[2]

Manto akımları

Manto akımı simülasyonu: Mavi-soğuk, kırmızı-sıcak (ASPECT mantle convection code)

Manto içinde ciddi sıcaklık farkları oluşmaktadır. Derinliklerde 5000 °C'ye çıkan sıcaklıklar, yüzeye yakın kısımlarda 1000 °C civarındadır dolayısıyla manto içinde termal hareketlilik görülür. Sıcak malzeme genleşir ve yoğunluğu azalır ve bu nedenle yükselirken; yüzeye çıkan materyal git gide soğur ve yoğunluğu artar dolayısıyla tekrar çöker. Bu bir döngü halinde konveksiyon hareketini oluşturur.[4]

Manto yükselmesi

Manto yükselmesi

Manto yükselmesi, oldukça fazla ısınmış bir ergiyik kayanın (aşırı sıcak) mantodan yükselmesidir. Bu durum sıcak noktaların (hot spot) en olası nedeni olarak görülmektedir. Aşırı ısınan kaya bir girişim yaparak astenosfer ve litosferi ısıtır ve tetikleyici şekilde volkanik püskürmelere neden olur.[2]

Diğer gezegen ve uyduların mantosu

Diğer gezegenler ve uyduların da mantosu vardır, örnek olarak Ay'ın mantosu 1350 km kalınlığındadır. İlkel magmanın soğumaya başlamasıyla jeokimyasal farklılaşma sonucu ağır ve hafif elementler ayrışır, ağır mineraller çökerken; hafif mineraller yukarı gitme eğiliminde olmaktadırlar.[5] Ay'ın mantosu olivin ve piroksen gibi daha yoğun minerallerden oluşur. Mars'ın mantosu da kabuk kısmının altında yer alır ve durgun (hareketsiz) bir durumdadır. Yumuşak kayaçlı bir yapıda olup içeriğinde silikon, oksijen, demir ve magnezyum bulundurur. Yaklaşık kalınlığının 1500 km olduğu düşünülmektedir.[6]

Kaynakça

  1. ^ a b Editors, Editors. "The Earth's Structure". suirbheireacht gheolaiochta. 14 Mayıs 2019 tarihinde kaynağından arşivlendi. 
  2. ^ a b c Editors, Editors. "Mantle". www.natgeo.com. National Geographic. 12 Mayıs 2016 tarihinde kaynağından arşivlendi. 
  3. ^ Cain, Fraser. "What is the Earth's Mantle Made Of?". Universe Today. www.universetoday.com. 6 Kasım 2010 tarihinde kaynağından arşivlendi. 
  4. ^ Brahic, André; Tapponnier, Paul; Brown, Lester R.; Girardon, Jacques (2017). Yerkürenin En Güzel Tarihi (5. basım bas.). İstanbul: Türkiye İş Bankası Kültür Yayınları. ss. 66-67. ISBN 978-975-458-356-4. 
  5. ^ Editors, Editors. "Inside the Moon". www.nasa.gov. NASA. 31 Mayıs 2021 tarihinde kaynağından arşivlendi. 
  6. ^ Sharp, Tim. "What is Mars Made Of?". www.space.com. Space. 6 Ağustos 2012 tarihinde kaynağından arşivlendi. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Dünya'nın yapısı</span> dünyanın iç yapısını anlatan madde

Dünya'nın iç yapısı: bir dış silikat katı kabuk, oldukça viskoz bir astenosfer ve manto, mantodan çok daha az viskoz olan sıvı bir dış çekirdek ve katı bir iç çekirdek olmak üzere küresel kabuklarda katmanlıdır. Dünya'nın iç yapısının bilimsel olarak anlaşılması, topografya ve batimetri gözlemlerine, dışa doğru kaya gözlemlerine, volkanlar veya volkanik aktiviteyle yüzeye getirilen örneklere, Dünya'dan geçen sismik dalgaların analizine, Dünya'nın yerçekimi ve manyetik alanlarına, Dünya'nın derin iç kısmının karakteristiği basınç ve sıcaklıklardaki kristal katılarla deneyler.

<span class="mw-page-title-main">Levha tektoniği</span> Litosferin yapısını inceleyen jeoloji dalı

Levha tektoniği } Dünya'nın litosfer'inin yaklaşık 3,4 milyar yıl öncesinden beri yavaş hareket eden birçok büyük tektonik levha içerdiği düşünülen genel kabul görmüş bilimsel bir teoridir.

<span class="mw-page-title-main">Dünya'nın yerkabuğu</span> Dünyanın dış tabakası

Yer kabuğu, taş küre veya litosfer, Yerküre'nin en dış kısmında bulunan yapıdır.

Manto, yer kabuğu ile çekirdek arasında yer alan, derinliğe göre değişen ısıya sahip bir yer katmanıdır. Mantonun üst kesimi yüksek sıcaklık ve basınçtan dolayı plastikimsi özellik gösterir. Alt kesimleri ise sıvı halde bulunur. Bu nedenle mantoda sürekli olarak alçalıcı-yükselici hareketler görülür. Kalınlığı 2.860 kilometreye yakındır. Ultra bazik kayaç veya ultramafik kayaçlardan oluşur. Dünya'nın en kalın katmanıdır. Ağır olup yoğunluğu 3,5–6 g/cm³ arasında bulunur. Bazı gezegenler, bazı asteroitler ve bazı gezegen uyduları mantoya sahiptir. Sıcaklığı 1900-3700 °C arasında değişir. Yapısında silisyum, magnezyum, nikel ve demir bulunmaktadır. Okyanus ortası sırtlarında oluşan kısmi manto erimesi okyanusal kabuğu, Yitim zonlarında meydana gelen kısmi manto erimeleri ise kıtasal kabuğu oluşturmaktadır.

Yer çekirdeği, Dünya'nın en iç kısmını oluşturur. En kalın yer katmanıdır (geosfer).

<span class="mw-page-title-main">Dünya</span> Güneş Sisteminde Güneşe en yakın üçüncü gezegen

Dünya veya Yerküre, Güneş Sistemi'nde Güneş'e en yakın üçüncü gezegen olup şu an için üzerinde yaşam ve sıvı su barındırdığı kesin olarak bilinen tek astronomik cisimdir. Radyometrik tarihleme ve diğer kanıtlara göre 4,55 milyar yıldan fazla bir süre önce oluşmuştur. Dünya'nın yer çekimi, uzaydaki diğer nesnelerle, özellikle Güneş'le ve tek doğal uydusu Ay'la etkileşime girer. Dünya'nın Güneş'in etrafındaki yörüngesi, 365,256 güneş günü, yani bir yıldız yılı sürer. Bu süre içerisinde Dünya, kendi ekseni etrafında 366,265 kez döner.

<span class="mw-page-title-main">Bazalt</span>

Bazalt, volkanik kaya kütlelerinden biri. Siyah renkte ve kesif yığınlar halindedir. Doğada kütle, damar ve akıntı halinde bulunur. Başlıca özelliklerinden birisi, altıgen prizmalar biçiminde, büyük sütunlar meydana getirmesidir. Bu sütunlar, mağma akıntılarının soğuyup büzülmesinden ileri gelmiştir. Sert ve dayanıklı bir taş olduğundan kaldırım, yapı taş, demiryolu, köprü malzemesi olarak kullanılır. Yeryüzünde çok bol olan bazalt, bazı memleketlerde, binlerce kilometrekarelik yerleri örter. Birleşik Krallık'ın kuzeyi, İrlanda, Almanya ve Amerika Birleşik Devletleri'nde büyük Hindistan'da Dekkan bölgesindeki bazalt yığınları 300.000 kilometrekarelik geniş bir bölgeyi kaplar.

<span class="mw-page-title-main">Magma</span> yeraltında bulunan, erimiş haldeki kayaçlar

Magma, yeraltında bulunan, ergimiş haldeki kayaçlar. Kayaçların basınç düşmesi, sıcaklık yükselmesi, H2O ilavesi gibi etkenler altında erimesi sonucu oluşan silikat hamuru durumundaki eriyiklerdir. Yeryüzüne ulaşarak yanardağlardan püsküren magmaya lav denir. Magma, dünya yüzeyinin altında bulunur ve diğer karasal gezegenlerde ve bazı doğal uydularda da magmatizmanın kanıtı keşfedilmiştir. Erimiş kayanın yanı sıra, magma ayrıca kristaller ve volkanik gazlar içerebilir.

<span class="mw-page-title-main">Magmatik kayaçlar</span> Magmanın yeryüzüne çıkarken soğumasıyla meydana gelen kayaçlardır.

Magmatik kayaçlar, magmanın yükselerek yer kabuğunun içerisine girip veya yeryüzüne ulaşıp soğuyarak katılaşması sonucu oluşan kayaç türüdür. Üç ana kaya türünden biridir, diğerleri tortul ve metamorfiktir. Magmatik kaya magma veya lavın soğutulması ve katılaşmasıyla oluşur. Magmatik kayaçlar çok çeşitli jeolojik ortamlarda meydana gelir: kalkanlar, platformlar, orojenler, havzalar, büyük magmatik bölgeler, genişletilmiş kabuk ve okyanus kabuğu. (Resim1) Magmatik kayaçlar temel olarak silikat minerallerinden oluşmuşlardır. Magmanın bileşimi temel bazı elementlerin dağılımını yansıtsa da oranları değişmekte ve bu da belli başlı magma tiplerinin oluşmasına neden olur.

<span class="mw-page-title-main">Wiechert-Gutenberg süreksizliği</span> yeryüzünden 2900 km derinlikte yer alan süreksizlik zonu

Wiechert-Gutenberg süreksizliği yeryüzünden 2900 km derinlikte yer alan süreksizlik zonu. Bu zonda cisimlerin yoğunluğu artar, P- dalgalarının hızı düşer, S-dalgaları sınır bölgesini geçemez. Bu zon, çekirdek-manto sınırı olarak da bilinir.

  1. Kıtasal kabuk
  2. Okyanusal kabuk
  3. Üst manto
  4. Alt manto
  5. Dış çekirdek
  6. İç çekirdek
A. Mohorovičić süreksizliği
B. Wiechert-Gutenberg süreksizliği
C. Lehmann süreksizliği
<span class="mw-page-title-main">Tektonik levhalar listesi</span> Vikimedya liste maddesi

Levha, yer kabuğunu oluşturan parçalardan her birine verilen isim. Yerkabuğu tek parça halinde değil, dev bir yapboz şeklindedir. Her bir yerkabuğu parçasına Levha adı verilir.

<span class="mw-page-title-main">Astenosfer</span> mantonun yer kabuğuna yakın olan üst kısmı

Astenosfer kelimesinin kökeni Antik Yunan'dan gelmektedir. Mekanik olarak zayıf olduğundan ἀσθενός [asthenos] yani güçsüz kelimesinden türetilmiştir. Mekanik olarak zayıf ve üst mantoda ki sünek bölgedir. Litosferin altında, yüzeyin yaklaşık 80 ila 200 km derinliklerinde bulunur. Litosfer-astenosfer sınırı genellikle LAB olarak adlandırılır.

<span class="mw-page-title-main">Yitim zonu</span> jeolojik bir süreçt

Yitim zonu, bir plakanın diğerinin altında hareket ettiği ve mantoda yüksek yerçekimi potansiyel enerjisi nedeniyle batmaya zorlandığı tektonik plakaların konverjan sınırlarında gerçekleşen jeolojik bir süreçtir. Bu işlemin gerçekleştiği bölgeler, batma bölgeleri olarak bilinir. Yitim oranları tipik olarak yılda santimetre cinsinden ölçülür, ortalama konverjan oranı çoğu plaka sınırı boyunca yılda yaklaşık iki ila sekiz santimetredir.

<span class="mw-page-title-main">Okyanusal kabuk</span>

Okyanus tabanlarında magmadan gelen malzemenin katılaşması ile oluşan kabuk. Okyanusal kabuk dünyanın bir parçası olan litosfer kabuğunun üzerinde bulunan okyanus havzalarıdır. Mafik kayaçlardan ya da demir ve magnezyum açısından zengin olan sima dan oluşur.

<span class="mw-page-title-main">Uzaklaşan levha sınırı</span>

Uzaklaşan levha sınırı, levha tektoniğinde farklı sınır ya da farklı plaka sınırları birbirinden uzaklaşmakta olan iki tektonik plaka arasında var olan doğrusal bir alandır. Okyanus tabanlarında okyanus ortası sırtı, karaların iç kısımlarında Büyük Rift Vadisi gibi kıta içi rift kuşakları oluştururlar.

<span class="mw-page-title-main">Yakınlaşan levha sınırları</span>

Yakınsak bir sınır Dünya üzerinde iki veya daha fazla litosfer plakasının çarpıştığı bir alandır. Bir plaka sonunda diğerinin altına kayar ve batma olarak bilinen bir işleme neden olur. Batırma bölgesi, Wadati – Benioff bölgesi adı verilen birçok depremin meydana geldiği bir düzlemle tanımlanabilir. Bu çarpışmalar milyonlarca ila on milyonlarca yıl arasında gerçekleşir ve volkanizmaya, depremlere, orojeneze, litosferin yok edilmesine ve deformasyona yol açabilir. Yakınsama sınırları okyanus-okyanus litosferi, okyanus-kıta litosferi ve kıta-kıta litosferi arasında meydana gelir. Yakınsak sınırlarla ilgili jeolojik özellikler kabuk türlerine bağlı olarak değişir.

Manto konveksiyonu, gezegenin içinden yüzeyine ısı taşıyan konveksiyonu akımlarının sebep olduğu, Dünya'nın katı silikat örtüsünün çok yavaş sürünen hareketidir.

<span class="mw-page-title-main">Litosfer</span> Dünyanın kabuklaşmış ve katılaşmış dış yüzeyidir

Litosfer, eski Yunancada "kayalık" Hintçede "küre" anlamlarına gelir. Tanım olarak ise, sert ve mekanik özellikleri ile tanımlanan karasal tipte bir gezegenin veya doğal uydunun en dış kabuğudur. Litosfer, kabuk ve üst mantonun binlerce yıl veya daha büyük zaman ölçeklerinde elastik olarak davranan üst mantonun en üst bölümünden oluşur. Gezegenimizin kaya kısmını oluşturan ve en dış katmanı olan kabuğu tanımlamada kimyasal ve mineraloji yapısı kullanılır. Litosferin altındaki katman, astenosfer olarak bilinir.

Dünya'nın iç yapısı küresel katmanlardan: bir dış (silikat) katı kabuk, son derece viskoz astenosfer ve üst manto, alt manto ve daha az viskoziteye sahip bir sıvı dış çekirdek ve katı bir iç çekirdekten oluşmaktadır. Dünya'nın iç yapısının bilimsel anlayışı topografya ve kaya gözlemleri, volkanlar veya volkanik aktivite tarafından daha büyük derinliklerden yüzeye getirilen örnekler, Dünya'nın içinden geçen sismik dalgaların analizi, Dünya'nın yerçekimi ve manyetik alanlarının ölçümleri ve basınç ve sıcaklıklarda değişiklik gibi deneyler Dünya'nın derin iç karakteristik özelliklerini oluşturmaktadır.

Üst manto, diğer adıyla astenosfer, litosferin 700 km altına kadar uzanır. Plakalar üst mantonun üzerinde hareketli bir şekilde bulunur. Plakaların hareketine göre üst mantodaki ergimiş magmamsı madde şekil değiştirir. Bu şekil değişimleri büyük çaplı olduğunda depremlere ve uzun sürdüğünde yeryüzü şekilleri oluşmasına neden olur.